TECHNICAL MANUAL WEIGHT INDICATOR

E-AF05: PROGRAM VERSION FOR INDUSTRIAL PRICE COMPUTING

3590EKR, 3590EXP, 3590EXT, CPWE, CPWET series indicator

Indicatori serie 3590EKR, 3590EXP, 3590EXT, CPWE, CPWET INDEX

1. REQUIREMENTS FOR AN OPTIMAL INSTALLATION 2
1.1 ELECTRICAL PRECAUTIONARY MEASURES 3
1.1.1 CABLE CLASSIFICATION 3
1.1.2 RECOMMENDED DISTANCES AMONG CABLES 4
1.1.3 MAXIMUM CABLE LENGTH 4
1.2 EARTHING SYSTEM 4
2. CONNECTION TO THE LOAD RECEIVER 8
2.1 ANOLOG LOAD CELLS 8
3. SETUP ENVIRONMENT 9
3.1 SET-UP ENVIRONMENT BLOCK DIAGRAM 11
3.2 DESCRIPTION OF THE STEPS 16
3.3 SCALE CALIBRATION 44
3.3.1 CALIBRATION PROCEDURE 44
3.3.2 LINEARISATION POINTS 46
3.3.3 ZONE OF USE DIFFERENT THAN THE ZONE OF CALIBRATION: 47
3.3.4 QUICK ZERO CALIBRATION 47
3.3.5 CELL EQUALISATION PROCEDURE 48
3.4 REMOTE SCALE CONFIGURATION 48
4. DISPLAY OF THE SCALE GRAVITY ACCELERATION AND CORRECTION OF THE WEIGHING ERROR DUE TO THE DIFFERENT GRAVITY ACCELERATION BETWEEN THE CALIBRATION AND THE UTILISATION ZONE 50
5. SERIAL OUTPUTS 50
5.1 RS 485 CONNECTION 51
5.2 PC CONNECTION 53
5.3 PRINTER CONNECTION 53
5.4 TRANSMISSION PROTOCOLS 54
5.5 TRANSMISSION MODES 56
5.6 SERIAL COMMANDS FORMAT 56
5.7 ADVANCED COMMANDS 62
5.8 CUSTOMISATION OF THE STRING [available for ComPc, ComPrn] 69
6. ANALOGUE OUTPUT (OPTIONAL) 69
6.1 OPERATING MODES 70
6.1.1 OUTPUT ON THE GROSS WEIGHT 70
6.1.2 OUTPUT ON THE NET WEIGHT 71
6.2 CONFIGURATION 72
7. PROGRAMMING THE PRINTOUTS 73
7.1 PROGRAMMING EXAMPLE 75
7.2 ASCII CODE TABLE 76
7.2.1 CODE PAGE 1252 WINDOWS LATIN 1 76
7.2.2 CODE PAGE 1251 WINDOWS CYRILLIC 77
7.2.3 CODE PAGE 1253 WINDOWS GREEK 78
7.3 LIST OF PRINT BLOCKS 79
7.3.1 ORDER BY KIND 79
7.3.2 NUMERICAL ORDER 85
7.4 BLOCKS WITH PARAMETERS 91
7.5 USE OF THE PRINT PREFORMAT 99
8. DISPLAY CUSTOMIZATION 102
9. ELECTRICAL CONNECTION SCHEMES 102
9.1 MOTHER BOARD 102
9.2 I/O EXPANSION BOARD (fitted with 3590EXT in IO version or CPWE) 105
9.3 INTEGRATED CIRCUITS INSTALLATION 106
9.5 CONTROL LIGHT 108

\triangle1. REQUIREMENTS FOR AN OPTIMAL INSTALLATION

To obtain the best results it is recommended to install the indicator and the platform (or transducer) in a place with the following conditions:

A flat, level surface on which to rest
Stable and vibration free
No dust or strong vapours
No draughts
Make sure the platform is level or that the loading cells are resting evenly
Moderate temperature and humidity ($15-30^{\circ} \mathrm{C}$ and $40-70 \%$)
Do not install anywhere where there is the risk of explosion
All the indicator connections have to be made respecting the rules applicable in the zone and in the installing environment. Respect the recommended electrical precautionary measures described in section 1.1.

Make sure that the grounding is made correctly, see section 1.2.
Everything not expressly described in this manual has to be considered as improper use of the equipment.
Avoid welding with load cells installed.
Use waterproof sheaths and couplings in order to protect the load cell cables.
Use a waterproof junction box to connect the cells.

1.1 ELECTRICAL PRECAUTIONARY MEASURES

Mains power supply is restricted to within $\pm 10 \%$ of the rated voltage
Electric protections (fuses etc.) are provided by the technician installing the instrument.
Respect the recommended minimal distances that are mentioned for the various cable categories, see sections 1.1.1 and 1.1.2.

The extension leads of the load cells or signal amplifiers, used for the connection of the serial ports and analogue output must be within the allowed maximum lengths, see section 1.1.3.

The extension leads of the load cells or signal amplifiers must be screened. In addition they must be laid on their own in a raceway or metal pipe as far away as possible from the power supply cables.

Install "RC" filters on the contactor coils, on the solenoid valves and on all devices producing electric disturbances.

If it is possible that condensation could form inside the weight transmitter it is advisable to leave the instrument powered at all times.

Every shielded cable or not (for instance PC cable, cell cable, power supply cable) connected to the indicator should be as shorter as possible, then you have to come out of the shield the minimum length of cable, then connect to the terminal box;

If the indicator is situated inside an electric panel, the power supply cable should be a shielded cable as shorter as possible, distant from every coil supply cable, inverter, electromotive force, etc. and in addition dedicate an uncoupler transformer in order to feed the indicator only.

1.1.1 CABLE CLASSIFICATION

The various cables are classified depending on the transmitted signals:

Category I

- Field bus, LAN
- Shielded data cables (RS232 ...)
- Shielded cables for analogue/digital signals < 25V (sensors, load cells...)
- Low tension power supply cables (<60V)
- Coaxial cables

Category II

- DC supply cables with tension $>60 \mathrm{~V}$ and $<400 \mathrm{~V}$
- AC supply cables with tension $>25 \mathrm{~V}$ and $<400 \mathrm{~V}$

Category III

- Power supply cables with tension $>400 \mathrm{~V}$
- Telephone cables

Category IV

- Any cable subject to lightning

1.1.2 RECOMMENDED DISTANCES AMONG CABLES

- When the cables are laid next to each other, these must be at the distances in the table below
- These distances are valid if in the air; these are reduced if the raceways are separated by grounded metallic shields.
- Different category cables can cross each other $\left(90^{\circ}\right)$

1.1.3 MAXIMUM CABLE LENGTH

LOAD CELL CABLE

The maximum reachable length using the appropriate load cell cable is:
-50 m with cable $6 \times 0,25 \mathrm{~mm}^{2}$
-100 m with cable $6 \times 0,5 \mathrm{~mm}^{2}$

RS232 CABLE

The maximum reachable length using the RS232 cable with a maximum baud rate of 19200 , is about 15 m .

RS485 CABLE

The maximum reachable length with the use of the appropriate cable for RS 485 connections (see section 5.1), is about 1200 meters.

ANALOG OUTPUT CABLE

The maximum length of the analogue output cable in current is:

- 100 m with cable $2 \times 0,25 \mathrm{~mm}^{2}$
-150 m with cable $2 \times 0,5 \mathrm{~mm}^{2}$
-300 m with cable $2 \times 1 \mathrm{~mm}^{2}$
The maximum length of the analogue output cable in voltage is:
-50 m with cable $2 \times 0,25 \mathrm{~mm}^{2}$
-75 m with cable $2 \times 0,5 \mathrm{~mm}^{2}$
-150 m with cable $2 \times 1 \mathrm{~mm}^{2}$

1.2 EARTHING SYSTEM

For the right earthing and the optimal functioning of the system, it is necessary to connect the indicator, the load cells, the possible junction box and the weighing structure to the earth.
All earthing cables must have the shortest possible length in order to minimize their resistance.

INDICATOR

Connect the external earthing of the indicator to the earth through copper cables having at least a $16 \mathrm{~mm}^{2}$ cross-section.

LOAD CELLS AND JUNCTION BOX

The earthing must be done by connecting the earthing cables to a ground bar with cables having a cross-section of at least $16 \mathrm{~mm}^{2}$ and by connecting the ground bar to a ground pole with a cable having a cross-section of at least $50 \mathrm{~mm}^{2}$.

- In the case the load cells are connected to the indicator through a junction box, it is necessary to connect the sheathing both of cells cables and of indicator cable to the earthing of the junction box (refer to the junction box manual) and connect this to the earth through copper cables having at least a $16 \mathrm{~mm}^{2}$ cross-section.
- If the load cells are connected directly to the indicator (without the use of the junction box), one should connect the shieldings of the load cell cables to the grounding point (or earthing bar) inside the container.
- If the weighing system concerns large and/or outdoor structures, like weighbridges, and the junction box is connected to the indicator in a distance that is greater than 10 m , or in the presence of noise, the cable shield must be earthed both in the junction box and in the indicator, and the two ground leads must be connected with an earth cable having a cross-section of at least $16 \mathrm{~mm}^{2}$.

WEIGHING STRUCTURE

Connect the weighing structure and the possible connected structures (for example silos that release material on the weighing structure) to the earth through copper cables having at least a $16 \mathrm{~mm}^{2}$ cross-section.

Furthermore it is necessary that for each cell, one connects the upper part with the lower part of the load cell through a copper braid section not less than $16 \mathrm{~mm}^{2}$; the upper part must be short-circuited with the surface of the weighing structure and the lower part must be grounded through a copper braid section not less than $16 \mathrm{~mm}^{2}$.

CONNECTED SERIAL CABLES AND INSTRUMENTS

Connect the shield of the serial cable at the grounding point (or grounding bar) inside the container (on the end of the cable toward the indicator) and at the earth connection of the connected instrument (on the end of the cable toward the indicator), and ground the earth connection of the connected instrument, through a copper cable section not less than $16 \mathrm{~mm}^{2}$.
To avoid possible side effects, the earth references of the connection and power supply cable of the indicator and of the connected instrument must be at the same potential.

GENERAL NOTES:

- All the grounding cables must have an adequate length, in order to obtain an overall resistance of grounding system less than 1Ω.
- In the case the weighing system regards great and/or outdoor structures, like weighbridges:
- The grounding connection is to be made by connecting the grounding cables to a grounding bar and the grounding bar to the grounding pole with a cable section not less than 50 mm 2 .
- the cable cross-section must be greater (for example $50 \mathrm{~mm}^{2}$ instead of $16 \mathrm{~mm}^{2}$ and $100 \mathrm{~mm}^{2}$ instead of 50 mm^{2}), because the voltage into play is greater (for example thunderbolts);
- the ground pole must be positioned at a distance of at least 10 metres from the weighbridge structure;
- one needs to open the SENSE inside the indicator in order to offset the drifts due to the increase in temperature.
- One should check and remove, if necessary, the connection between the earth and the neutral wire of the electrical installation.

EARTHING EXAMPLE WEIGHBRIDGE

U-BOLT BETWEEEN PLATE UNDER CELL AND WEIGHBRIDGE

EARTHING EXAMPLE OF A SILO

2. CONNECTION TO THE LOAD RECEIVER

2.1 ANOLOG LOAD CELLS

IMPORTANT: Respect the electrical precautionary measures indicated in section 1.

After having followed the instructions regarding the platform or the load receiver, the screened cable leading from the load cell(s) must be connected to the instrument through the CELL1 terminal board and the CELL1, CELL2, CELL3, CELL4 connectors; see section 8.
The terminal board of the indicator may be connected to the 6 -wire load receiver (with use of SENSE), or simply 4-wire; for this, through jumper J7 and J8 it is possible to choose whether to short-circuit the SENSE with the POWER SUPPLY (jumpers closed) or not (jumpers open). The sense allows compensating for any drops in voltage in the part of the cable that connects the instrument to the transducer. It is useful when the distance between the indicator and the transducer is greater than 10 m .
The 4-pin connectors instead allow just the 4-wire connection.
To make the connection qualified personnel must open the instrument (see terminal board connections section 8).
TAKE NOTE: if there is just one LOAD RECEIVER, it is possible to make a 6 -wire connection (use of sense) directly with the terminal board, removing the J7 and J8 jumpers.
If there are two or more LOAD RECEIVERS, one should close the J7 and J8 jumpers (sense and power supply are short-circuited) and make the 4 -wire connection.

Normally the indicator comes already connected to the platform and is ready to use. If this is a LEGAL version instrument, access to the connection will be subject to a legal SEAL.
Follow the instructions for preparing the platform for use.

See section 8 for further information.

PART RESERVED FOR THE AUTHORISED TECHNICAL PERSONNEL

3. SETUP ENVIRONMENT

By "SETUP environment" we mean a certain menu inside which all the indicator operating parameters can be set.
To enter it, turn on the instrument and, while the firmware version is being displayed, press the TARE key for an instant.

The indicator shows:
1)
"TECH"
for an instant on

the display $\rightarrow \stackrel{$| ACCESS |
| :---: |
| PASSWORD |
| DISABLED |$}{\square}$

"LAnG"
on the display on top;
"LANGUAGE"
on the display below
COMPLETE SET-UP
MENU
(technical personnel).

Or
2)

If one has chosen 2) and you want to access the complete set-up menu one should:

In the parameter description and in the block diagram

- The METRIC parameters are shown with the (*) symbol, and, with approved instrument, these may not be visible or read only. See the explanation of the parameter for the details.
NOTE: The indicator is approved when the J1 jumper (CAL) of the motherboard is closed (see the electrical scheme in section 8.1).
- The CONDITIONAL STEPS are shown with the (§) symbol, and are not accessible or displayed in specific conditions, shown in the step description.
- The DEFAULT VALUES are shown with the (!) symbol placed next to the step and at the end of it.

FUNCTION OF THE KEYS IN THE SET-UP ENVIRONMENT

KEY	FUNCTION
F6, F7	Allow scrolling ahead and behind, in the menu steps or in the parameters inside a step.
Fn / ENTER	Allows to enter a step or confirm a parameter inside a step.
C / DEL	Allows to exit a step without confirming the possibly modified parameter and go to the preceding level.
F5	Allows to print all configurations in the set-up environment (if one is in the menu), or to print the configuration of the single step (if one is in the desired step). The display shows the "PRINT" message: press ENTER to confirm or C to cancel.
NUMERIC KEYBOARD	Allows entering an alphanumeric input.

The display show, the current parameter and its description; generally, when one exits a step the instrument places itself on the following step.

TO EXIT THE SET-UP ENVIRONMENT, PRESS THE C KEY MANY TIMES UNTIL THE INDICATOR SHOWS:

```
EXITING SETUP
SAVE ?
```


3.1 SET-UP ENVIRONMENT BLOCK DIAGRAM

The following diagram shows the structure of the indicator's set-up environment; each step has been described in detail in the section 3.2.

(§) SND.CTS (!) Disable, Enable

3.2 DESCRIPTION OF THE STEPS

<<LAnG >> LANGUAGE SELECTION

Parameter Language Used Codepage (see section 7.2)

- En \quad English 1252 Windows Latin 1
- Fr FranÇais 1252 Windows Latin 1
- dE Deutsch 1252 Windows Latin 1
- ES Español 1252 Windows Latin 1
- It Italiano 1252 Windows Latin 1
(!) En

<< tYPE >> INSTRUMENT TYPE (*)

One selects the type of application: either the scale with independent channels or scale with non independent channels (eventually digitally equalised).
ind.Ch. Instrument connected to 1, 2, 3 or 4 independent scales.
dEP.Ch Instrument connected to 1 scale with 2,3 or 4 non independent load cells (eventually equalised digitally using a specific software procedure).
(!) ind.Ch
(*) In case of approved instrument the parameter is read only.

<< nuM.SCA >> NUMBER OF CONNECTED SCALES (*)

- n.SC. 1 (1 scale) (§). This value is not visible is one sets tYPE on "dEP.Ch".
- n.SC. 2 (2 scales)
- n.SC. 3 (3 scales)
- n.SC. 4 (4 scales)
- rEMotE (§) This value is not displayed if SetuP >> SeriAL >> rEAdEr step is set on CoMAuX.
(!) n.SC. 1
(*) In case of approved instrument the parameter is read only.

<< F.ModE >> SCALE FUNCTIONING

<< En.kEyS >> KEYS ENABLING

It is possible to enable/disable each single key of the keyboard as well as the following two sequences of keys:

- Fn + Fn for access to a menu listing all functions
- 123 + Fn for direct access to a specific function (e.g. number 123)
- select the desired key with F6/F7:

- press ENTER to modify the setting:

F1

- Disable
- Enable
- Press F6/F7 to select "Enable" (enabled) or "Disable" (disabled), and ENTER to confirm.

NOTES:

- It's possible to enable/disable all the keys together (including the above-mentioned sequences of keys), by selecting "ENABLE ALL" or "DISABLE ALL" (the confirmation will be requested with the message "SURE?").
- The disabling of the keys will have effect only the WEIGHING PHASE, in other words, not inside the menus, databases, etc...
- The turning off of the instrument (long pressing of the C key) will always be enabled.
- The disabling of the keys will be applied also on the PC keyboard, if connected.
(!) ENABLE ALL, except the sequences of keys "Fn + Fn" and " 123 + Fn"

<< F.kEyS >> FUNCTION KEYS COUPLING

It's possible to modify the function of the F1, F2.....F10 keys, and the combination of these with the $2 \mathrm{nd} \mathbf{F}$ or Fn keys (i.e. "2nd F + F1", "Fn + F2", etc...).

- select the desired key with F6/F7:

- press ENTER to modify the setting:

- Enter the desired code and confirm with ENTER.

KEYS' FUNCTIONS IN THIS STEP

V
$-$
F1
F2
ENTER
2nd F
NOTE:
By pressing the ./HELP key, it's possible to display the list of the keys used inside this step and their functions.
The list is automatically. If one wants to scroll the list of the keys in manual mode, it is possible to use the arrow keys
(F6 ${ }^{-}$and F7 \bullet).

CODE	BASIC FUNCTIONS	DEFAULT KEY/S
100	Scale zero (ZERO)	TARE/ZERO pressed at lenght
101	Cyclic zero (0.CYCLE)	2ndF + TARE/ZERO
102	Tare execution (TARE)	TARE/ZERO
103	Enable the printer (PRN-ON)	Fn + 0
104	Simple printout (PRINT)	F5
105	Repetition of last printout (CPY.PRN)	2ndF + F5
106	Change visualization weight (WEI.VIS)	2ndF + F8
107 (*)	Change visualizationLCD display (LCD.VIS)	2ndF + F9
108	LOck/unlock keyboard (L. KEYB)	F1 pressed at lenght
109	Visualization times ten (Disp.10)	F2 pressed at lenght
110	Set time and date (CLOCK)	F3 pressed at lenght
111	Diagnostics menù (Diag.)	F4 pressed at lenght
112	Lock/unlock tare (L. TARE)	F5 pressed at lenght
113 (*)	Input text configuration (txt)	F4
114	Calculator (CALC)	
115	Print and clear partial total (Prn.0.t0)	F8
116	Print and clear general total (Prn.0.t1)	F9
117	Print and clear grand total (Prn.0.t2)	F10
118	Diagnostic peripheral units (P.DIAG)	
119	COM data diagnostics (COM.DAT)	
120	Customized display enabling or change of visualization if already enabled (CST.DSP)	
121	Input text 0 configuration (txt.0)	
122	Input text 1 configuration (txt.1)	
123	Input text 2 configuration (txt.2)	
124	Input text 3 configuration (txt.3)	
125	Input text 4 configuration (txt.4)	
126	Input text 5 configuration (txt.5)	
127	Input text 6 configuration (txt.6)	
128	Input text 7 configuration (txt.7)	
129	Input text 8 configuration (txt.8)	
130	Input text 9 configuration (txt.9)	
131	Input text cancellation: from 0 to 14, 99 erase all the texts (txt.rSt)	
132	Print format sending: from 0 to 30 (Send.P.F)	
OTHER FUNCTIONS		
$200{ }^{*}$)	Format linking to the Simple Printout (Prn.Fmt)	
201	Format Linking to the Totalisation (SND.FMT)	
202 (*)	Setpoint configuration (SETPNT)	
203	Selection remote scale (REM.SCA)	2ndF + 0
204	Selection channel 1 (PLT-1)	2ndF + 1
205	Selection channel 2(PLT-2)	2ndF + 2
206	Selection channel 3 (PLT-3)	2ndF + 3
207	Selection channel 4 (PLT-4)	2ndF + 4
208	Change of data visualized on the display with active zoom (DAT.VIS)	
209	Switch on the next scale	$2 \mathrm{ndF}+2 \mathrm{ndF}$

SPECIAL FUNCTIONS		
300	Totalisation (totAL)	F6
301	Change seasoning and expiry days (Upd.Day)	
302 (*)	Change price (Upd.Pri)	
303 (*)	Products (Art.dtb)	F1
304	Print and clear product tot (Prn.0.tA)	2ndF + F1
305	Print and clear products tot(Prn.0.tA)	
306	Ingredients (ing.dtb)	F3
307 (*)	Customers database (CUS.dtb)	F2
308 (*)	Tare database (tar.dtb)	Fn + TARE/ZERO
309	Article alpha-betic search	
310	Customer alpha-betic search	
PRINTOUT MENU VISUALIZATIONS		
400	Automatic print partial total (AUt.Prn)	
401	Set number labels (LdL.SEt)	
402	Totaliser additional value (Add.VAL)	
403	Set progress. digits (Prg.1)	
404	Visualizes partial total (V.t-0)	
405	Print partial total (Prn.t-0)	
406	Reset partial total (0.t-0)	
407	Visualizes general total (V.t-1)	
408	Print general total (Prn.t-1)	
409	Reset general total (0.t-1)	
410	Visualizes grand total (V.t-2)	
411	Print grand total (Prn.t-2)	
412	Reset grand total (0.t-2)	
413	Visualizes product tot (V.t-A)	
414	Print product tot (Prn.t-A)	
415	Reset product tot (0.t-A)	
416	Print weighs report (Rpt)	
417	Reset weighs list (0.W.LIST)	
418	Weighs list net (W.LIST.N)	
419	Weighs list gross (W.LIST.G)	
420	Weighs list tare (W.LIST.T)	
421	Reset scale totals (0.t-ALL)	
422	Reset products tot (0.ArtS)	
423	Reading aliby memory (ALIBI)	
SET THRESHOLDS TOTALISATION		
500	Set maxim. threshold (tr.HI)	
501	Set minim. threshold (tr.LO)	
CURRENCIES AND CONV. FACTOR		
600	Currency minimun division (Min.Div)	
601	Decimals currency (Decim.)	
602	Symbol currency (SYMboL)	
603	Set conversion factor (COnv.)	
604	Totaliser function mode (EXE.tot)	
605	Selection price/weight (Pri.Wei)	
606	Set fixed weight/0=cancel (FiX.VAr)	

CANCEL MENU				
700	Cancel last weighs (CAnC. 1)			
701	Cancel weight on scale (CAnC. 2)			
702	Cancel end weighs (CAnC. 3)			
PROGRESS MENU				
800	Set total. progress. (Prg)			
801	Set customer progr. (cuS.Prg)			
802	Set boxes progr. (box.Prg)			
803	Set pallet progr. (plt.Prg)			
804	Set partial progr. (PAr.Prg)			
805	Set general progr. (GEn.Prg)			
806	Set grand t. progr. (GrA.Prg)			
807	Set product progr. (Art.Prg)			

Preamble function

It is possible to associate also a preamble (numeric value) to the F1, F2...F10 keys. In this way, when the key is pressed, the preamble is automatically used as parameter of the function to be executed.
The functions to which can be associated a preamble are:

FUNCTIONS	PREAMBLE VALUE
Change visualization LCD display (LCD.VIS)	number of the visualization that is displayed when the zoom is not active
Input text configuration (tXt)	number of the input text that one wants to modify.
Coupling print formats (Prn.Fmt)	number of the format on which one wants to modify the coupling.
Setpoint configuration (SETPNT)	number of the setpoint that one wants to modify.
Change data while in zoom (DAT.VIS)	number of the visualization that is displayed when the zoom is active.
Article database (Art.dtb)	number of the article that is automatically selected

By pressing a key with the function of a database associated (for example articles database) and it is enabled the preamble to the value 9999, it is required to deactivate the record eventually enabled.

EXAMPLE:

$9999+\mathrm{F} 1$ (article database), deselect active article.

- select the desired key with F6/F7:

- press F2 to insert the preamble, select enable and confirm with ENTER:

PREAMBLE

- Disable
- Enable
- insert the numeric value to combine with the function and confirm with ENTER

PREAMBLE

Preamble value
(blinking)
insert the desired value through the numeric keyboard and confirm with ENTER (by confirming the value 0 , the preamble is disabled).

Key (preamble + function)

```
F1 (2 + F1)
```

304
Art.dtb

<<dtb >> DATABASES

<<En.dtb >> ENABLING DATABASES

It is possible to enable or disable the databases:
EnAbLE: databases enabled.
diSAbL: databases disabled.
(!) EnAbLE

<< En.A.FId >> PRODUCT FIELD ENABLING

It's possible to enable one by one the fields necessary for the application.
Field name

- Press F6/F7 to select "Enable" (enabled) or "Disable" (disabled), and ENTER to confirm.
- Proceed up to the last suggested field, after which it automatically exits the step.

NOTE: The first article description is always enabled.

<<En.C.FId>> CUSTOMER FIELDS ENABLING

It's possible to enable one by one the fields necessary for the application.
Name of field

- Press F6/F7 to select "Enable" (enabled) or "Disable" (disabled), and ENTER to confirm.
- Proceed up to the last suggested field, after which it automatically exits the step.

NOTE: The first customer description is always enabled.

<< u.M. >> DATABASE UNIT OF MEASURE

It is possible to set the unit of measure of the ARTICLE database; in relation to the total values: $\mathrm{kg}, \mathrm{t}, \mathrm{lb}, \mathrm{g}$; if the unit of measure is different than the one of the active scale, the displayed or printed total value will be automatically converted with the database's unit of measure.
(!) kg

<< dECiM. >> DATABASE DECIMALS

It is possible to set the number of decimals of the ARTICLE database, in relation to the total values: $1,2,3$, no decimal; if the number of decimals is less than the one of the active scale, the displayed or printed total value will be automatically rounded off.
(!) 3

<< init. >> INITIALIZE DATABASES and INPUT TEXTS

By pressing ENTER one initialises the DATABASES (with the total values) and the INPUT TEXTS: in this way all their contents will be cancelled.
The cancellation is not immediate; the indicator requests a further confirmation (the LCD display shows "RESET DATABASES ? ENTER=YES C=NO"). By pressing ENTER one confirms the operation, by pressing \mathbf{C}, the indicator gives the possibility to cancel all the databases individually in this order: PRODUCTS DATABASE, INGREDIENT DATABASE, TARE DATABASE, INPUT TEXTS, CUSTOMERS DATABASE.
Following the initialisation of the databases, the unit of measure and the decimals are brought back to the default values.

<< totAL >> TOTALISER

<< EXE.tot >> AUTOMATIC/MANUAL TOTALISER

One sets the totalisation mode:

- Auto automatic upon weight stability.
- ManuAL manual using the F6 key.
(!) ManuAL
<<tArE >> SELECTION OF THE TARE EXECUTION MODE
- diSAbL Disabled.
- EnAbLE Enabled.
- MAnd Obligatory execution before carrying out a totalisation.
- A.MAnd Automatic execution upon weight stability, obligatory before carrying out a totalisation.

See the section 7.9 "SELECTION OF THE TARE EXECUTION MODE" in the user manual for the functioning specifics.
(!) EnAbLE

<< t.tot >> TARE AFTER THE TOTALISATION

- MAnuAL Manual execution.
- Auto Automatic execution after each totalisation.

See the section "TARE AFTER THE TOTALISATION" in the user manual for the functioning specifics.
(!) MAnuAL

<< dLy.tot >> TOTALISATION DELAY

Only for the automatic totalisation, one sets the time delay which runs between the weight stability and the totalisation.
NOTE: $\mathrm{MIN}=000.0 \mathrm{sec}$. ; MAX $=999.9 \mathrm{sec}$.
(!) 000.0

<<t.rELAY>> TOTALISER ONLY IF ACTIVE RELAY

Pressing enter is possible to enable a condition of totalization for which it is not possible to totalize if the condition is not true. The condition is given by the function of one of the $4+12$ outputs. It will be asked to enter the output number. If it is inserted 0 the control is disabled.
(!) 00

<< tot.tYP >> TOTALISER TYPE

One sets the type of totalisation: in loading (LoAd), in unloading (unLoAd), and in unloading as well as in unloading (both).
(!) LoAd

<< rESEt >> TOTALISER CONFIRM RESET

It is possible to select the automatic resetting of the totals when these are printed (diSAbL) or the resetting upon request (EnAbLE).
(!) EnAbLE

<< rEACt >> REACTIVATIONS

It is possible to set whether to reactivate the printout and the totalisation with:

- PASSAGE BY ZERO OF THE NET WEIGHT (PASS. 0)
- WEIGHT INSTABILITY (inStAb).
- ALWAYS ACTIVATE (ALWAYS).
(!) PASS. 0

<< rEStAr >> RESTORING TARE AND ZERO AT START-UP

It's possible to set whether to restore or not at start-up the first tare and the active tare before turning off the instrument; furthermore, if the current gross weight and the last stored gross weight before turning off the instrument are greater than zero, the stored zero is restored, otherwise the automatic zero is carried out.
EnAbLE: restoring enabled tare and zero.
diSAbLe: restoring disabled tare and zero.
(!) diSAbLe
See the section "RESTORING TARE AND ZERO AT START-UP" in the user manual for the functioning specifics.

<< LoGo >> TEXT UPON START-UP

At the start-up of the indicator, the LCD display shows a message of 2 lines of 16 characters, which is set in this step, or a 160×32 pixel photo uploadable from Dinitools ${ }^{\text {TM (" *.bmp "monochromatic format is accepted). For further }}$ informations see the Dinitools ${ }^{\text {TM }}$ Manual.

(!) DIN ARGEO

<<tXt >> INPUT TEXTS

<<CFG.tXt >> INPUT TEXT CONFIGURATION

Through this step one can enter, modify or cancel the heading of the input texts which will be filled in during the weighing through the F4 key of the indicator; refer to the user manual for further specifications. (USER MAN.REF.).

ENTRY

- Press ENTER to enter in the step.
- Select the eventual desired position through the arrow $\boldsymbol{\rightharpoonup}$ keys (or with the keyboard digit the position number).
- Press F1 to enter the text in the desired position, or the first free position, if an already occupied position has been selected.
- The display shows "DESCRIPTION" and one can now enter the heading of the input text (up to 16 characters); press ENTER to confirm.
- The display shows "TEXT" and one can enter the contents of the input text (up to 32 characters); press ENTER to confirm.
- The display shows "THRESHOLD" and one can enter the maximum number of alphanumeric characters enterable in the field "TEXT"; press ENTER to confirm.
- The display shows "MANDATORY INPUT", if one chooses "Enable" it is possible to exit from the input phase only if the text isn't null; press ENTER to confirm.
- The display shows "ONLY VOID INPUT"; if one chooses "Enable" it is possible to modify the text only if it is null; press ENTER to confirm.
- NOTE: The threshold entered here defines also the field length for the compilation through the F4 key in the weighing phase; if no text is inserted, the length is set at 32 characters.

MODIFICATION

- Press ENTER to enter in the step.
- Select the storage to be modified through the arrow $\boldsymbol{\sim}$ keys (or with the keyboard digit the position number) and press F2.
- Modify the desired fields, listed in the previous section.
- NOTE: The text entered here defines also the field length for the compilation through the F4 key in the weighing phase; if no text is inserted, the length is set at 32 characters.

CANCELLATION

- Press ENTER to enter in the step.
- Select the storage to be cancelled through the arrow - veys (or with the keyboard digit the position number) and press F3.
- The indicator requests a further confirmation: press ENTER to confirm or another key to cancel.

PRINTING

- Press ENTER to enter in the step.
- Once inside it, press the F5 key to print all the input texts. The display shows the message "PRINT ?": confirm with the ENTER key to print the whole input texts' database.

HELP

By pressing the ./HELP key, it's possible to see the keys list used in the menu.
The key list is automatically. If you want to see the keys list, in manual mode, use the arrow key (F6 $\boldsymbol{\sim}$ e F7 $\boldsymbol{\wedge}$).

<< d.thrES >> DATA LENGTH THRESHOLD FROM READER

If one enables the compilation function of the free texts through the bar code reader / badge (see relative manual), In this step one can define a length (from 00 to 31) which conditions the storage of data ready. If the datum has a length less or equal to the predefined one; it is stored in the first input text; otherwise it is stored in the second one.

NOTE: the function has been enabled on the serial port selected in the SEtuP >> SEriAL >> rEAdEr step, or on the PC KEYBOARD input, by selecting the "Reader" parameter in the SEtuP >> PC.KEYb >> KEY.uSE step.

<< tXt.i >> ENTRY OF HEADINGS

Up to 3 lines $\times 24$ characters of text can be entered that will be printed if programmed in the printout formats (see blocks $406,407,408$). The text entered will remain stored and printed until it is either cancelled or substituted.

<< CLr.rAM >> CANCELLATION OF THE BUFFERED RAM

The indicator has a buffered RAM memory (not volatile when power is removed) inside which is the database data, the input texts, the print formats, the heading.
The cancellation is not immediate; the indicator requests a further confirmation (the display shows "SurE?): press ENTER to confirm; press another key to cancel.
Note: CALIBRATION DATA ARE NOT CANCELLED.

<<dtb.PWd >> SET DATABASE ACCESS PASSWORD

By confirming the Enable setting one may insert a password of up to 5 digits, which will inhibit the entry, modification or cancellation of the databases, during the weighing.
The settable values run from 0 to 65534; by setting Disable, this password is disabled.
See section 12 in the user manual.
(!)Disable

<< tAMAG >> TAMAGOTCHI

One enters the "NUMBER of MONTHS" passed (2 digits, MonthS paramters), and the "NUMBER of the WEIGHS" made (5 digits, WEiGh. parameter) since the last calibration; after this, one is advised to recalibrate the instrument. By pressing ENTER one passes to a submenu:

- MonthS >>> Setting of Months
- WEiGh. >>> Setting of Weighs
- rESEt >>> Clearing of Months and Weighs from the last calibration

If you set the number of months and the weighing to zero, this function will be disabled; in any case it is possible to activate a choice of the number of months (MAX 99) or the number of weighs (MAX 99999).
By confirming with ENTER on the "rESEt" step one sets at zero the number of months and weighs taken place since the last calibration made.
At start-up and every day at 11:00 o'clock, the indicator will be checking for the number of weighing and the number of months that have passed since the last calibration. If one of the values or both are equal or higher than the previously set values, the message "RECALIBRATE THE SCALE" appears in the LCD display and an intermitting sound is emitted. By pressing any key, the indicator will enter in the normal scale functioning mode.

NOTE: The number of weighs is increased when, after passing by the unstability, there is a stable weight and greater than 4 divisions on the scale.
(!) MonthS 00; WEiGh. 00000.

<< SEtuP >> SCALE CONFIGURATION

<< ConFiG >> METRIC PARAMETERS

If various scales are connected (see nuM.SCA parameter), the scale number to be configured will be requested; the configurations inside this menu must be made for each connected scale.

<< PArAM. >> PARAMETERS

<< StAbiL >> FILTERING INTEGRATION

By pressing the ENTER key one accesses the selection of the type and degree of filter intervention for the stability of the weight indication:

FLt 0-3 simple weighing
h.r.0-1 high resolution
dYn.0-1 weight in movement (i.e. weighing animals)
doS.0-3 dosage
SLW. 0 - 3 weight rather unstable
h.r.2-7 high resolution
dYn.2-3 weight in movement (i.e. weighing animals)
The higher the filter value, and greater is its intervention relative to the type of filter used.
(!) FLt 0
(*) In case of approved instrument, one can select only FLt 0...3, h.r.0, h.r.1, dYn.0, dYn.1.
<< (*) Auto-0 >> AUTOZERO AT START-UP
Automatic acquisition of the gross zero at start-up.

Auto 0
 - Disable
 - Enable

- Disabled

Auto 0	$\xrightarrow{\text { ENTER }}$	C.PErC	Clearing percentage (blinking)
- Disable		10^{-1}	
- Enabled		Set the clearing percentage in relatio (in between +/-1 and +/-50 \%).	n to the capacity

This value is not visible if there is just one scale (see the nuM.SCA parameter).
See section 3.2 (USER MAN.REF.) for details on the functioning.
${ }^{*}$ *) with approved instrument:

- by confirming the setting of EnAbLE or CYCLIC it is possible to modify the clearing percentage between $+/-1$ and +/-10 \%.
(!) EnAb, +/-10 \%

Acquisition of the gross zero through the ZERO key.

0.PErC

Clearing percentage (blinking)
02

Set the clearing percentage in relation to the capacity (in between $+/-1$ and $+/-50 \%$).
By entering the 0 value, it's possible to disable the ZERO functions in the weighing phase.
See section 6 (USER MAN.REF.) for functioning details.
(*) In case of approved instrument, the settable values are between 0 and 2.
(!) $+/-2$ \%

<< WArMuP >> WARM-UP PHASE

It is possible to set a time in which, during the start-up phase, a short preheating of the instrument's electronics is made, in order to optimise the weighing.
The settable values go from 00 to 60 sec .
The 00 value disables the function.
(!) 00

<< (*) 0.trACk >> ZERO TRACKING

This menu allows setting the zero tracking, in other words, the compensation parameter of the scale's thermal drift. The set value corresponds to the number of stable divisions per 1 second that one desires to compensate.
tr. $1 / 4 \quad+/$ - one fourth of a division
tr. $1 / 2 \quad+$ - half division.
tr. $1 \quad+$ - one division.
tr. 2 +/- two divisions.
tr. no tracking disabled.
(!) tr. $1 / 2$
(*) In case of approved instrument, by entering the step one views the set value; by pressing ENTER it's possible to modify the parameter and choose one of the following values: tr. no, tr. $1 / 2, \operatorname{tr} .1 / 4$. .
<< (*) diV.Stb >> DIVISIONS BY STABILITY
In this step one enters the number of divisions by which the instrument detects the weight stability; the higher the number of divisions, less is the sensitivity, and consequently the stability is more easily detected. The possible values are $0 . . .99$; By setting the 0 value, the check is disabled.
(!) 2
(*) In case of approved instrument the parameter is read only.

<< (*) GrAV >> GRAVITY ZONE AND ZONE OF USE

Through this step one selects the gravitational acceleration value of calibration and of use of the instrument: Manual entry of the g value: the instrument is ready for the manual entry of the gravitational acceleration value. If one enters a wrong g value: the minimum decimal value is proposed (9,75001); by a wrong g value one intends a decimal number not including between 9,75001 and 9,84999 (included).
(!) $\mathrm{g}=9,80655$
(*) In case of approved instrument the parameter is read only. $_{\text {(}}$

<< EquAL. >> EQUALISATION (§)

See section 3.3 "SCALE CALIBRATION".

(§) This step is visible only if the scales are connected in a non independent way (see the tYPE parameter).

<<CALib. >> SCALE CALIBRATION

See paragraph "3.3 SCALE CALIBRATION".

${ }^{(*)}$ In case of approved instrument the parameters inside of this step are read only.
(*) In case of approved instrument the parameter is not displayed.

<< SEriAL >> SERIALS, PRINTOUTS, ETC...

<< PortS >> SERIAL PORTS CONFIGURATION

By pressing ENTER it's possible to choose the most adequate combination for the use of the three serial ports on the indicator hardware (COM1, COM2, COM3):

Parametro	COM 1	COM 2	COM 3
PC.Pr.AX (!)	ComPC	ComPrn	ComAux
PC.AX.Pr	ComPC	ComAux	ComPrn
Pr.PC.AX	ComPrn	ComPC	ComAux
Pr.AX.PC	ComPrn	ComAux	ComPC
AX.PC.Pr	ComAux	ComPC	ComPrn
AX.Pr.PC	ComAux	ComPrn	ComPC

<< CoMPrn >> CONFIGURATION OF PRINTER SERIAL

<< bAud >> SET BAUD RATE

By pressing the ENTER key one accesses the selection of the data transmission speed (measured in Baud $=$ bit/second). The possible values are: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.
(!) 9600

<< PAritY >> SET PARITY

By pressing the ENTER key one accesses the selection of the parity bit type. The possible values are: nonE (absent parity bits), odd (uneven parity bits) e EVEn (even parity bits).
(!) nonE

<< Word >> SET WORD

By pressing the ENTER key one accesses the selection of the number of data bits. The possible values are: 8 (8 data bits) and 7 (7 data bits).
(!) 8

<< StoPb >> SET STOP BIT

By pressing the ENTER key one can then select the number of stop bits. The possible values are: 1 (1-stop bit) and 2 (2 stop bits)
(!) 1

<< CtS.St. >> SYNCHRONISM SIGNAL

On the serial line set as COM.PRN the indicator can manage a synchronism signal.

- by using the dedicated CTS (Clear To Send) signal, if one uses the COM2 port, or
- by using the RX input, if one uses the COM1 or COM3 port (in this case, by enabling the function, this input will be no longer managed for other reception functions).
A device (like a printer) that is slow in processing the data received, can interrupt the transmission temporarily using this signal.
With synchronism signal active for a time greater than 10 seconds the indicator cancel the printing, it shows the message "PRINTER ERROR: CHECK THE CTS!" for a few seconds and returns to the weighing phase
It is possible to select:

no-CtS	Disable	(ITALORA WITTY280 and SMT280)
LoW	CTS active low	(LP522/542, EPSON LX300, TM295, TPR)
hiGh	CTS active high	(DP190)

EMuCtS Emulation of CTS signal: one is asked to enter the number of characters (nChrS) using 3 digits, which will be transmitted upon each transmission; then one should enter the wait time in milliseconds (tiME), using 4 digits, from a transmission and the next one.
XON/XOFF XON/XOFF control for the printer. Is necessary the insertion of the printer reset command (4 characters in decimal) and the decimal value of XON and XOFF character (17 and 19 of default).
(!) LoW

<< SND.CTS >> SECOND CTS SIGNAL (§)

This step decides if enables (Enable) second CTS signal used for 2 printers or not (Disable). See the previous step - << CtS.St. >>.
(§) the step is visible only if COM2 is set on "PRN" and LOW or HIGH signal is enabled inside "CTS.ST." step.
(!) Disable

<< Err.CtS >> CTS STATUS ERROR

By enabling this error, it is possible to block in advance the print or totalization function, if recalled with an already active synchronism signal (see previous step): the indicator display will shows the message "PRINTER ERROR: CHECK THE CTS!" for a few seconds and return to the weighing phase without carrying out the function.
Press F6/F7 to Enable (enabled) or Disable (disabled), and ENTER to confirm.
(!) Disable

<< PWrPrn >> PRINTER POWER SUPPLY

This step regulates the "AUX" output voltage which is on the board (see the electrical scheme in section 8.1; one may select:

PWrEXt
EXtoFF Internal auto-off power supply (AUX output always active; at the beginning of each printout some
PWrint
(!) PWrint

CR are sent as start-up characters, for a printer in energy saving mode).
External power supply (AUX output active)

Internal power supply (AUX output active just when printing).

```
<< ProtoC >> SELECTS PROTOCOL
    norMAL Print
    riPE 6 Dini Argeo 6-digit repeater.
    ALibi print/alibi memory
    Cont. continuous transmission
```

 For the protocol specifications, see section 5.4
 (!) norMAL
 << COM PC >> PC SERIAL CONFIGURATION
<<bAud >> SET BAUD RATE
By pressing the ENTER key one accesses the selection of the data transmission speed (measured in Baud $=$
bit/second). The possible values are: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.
(!) 9600

<< PAritY >> SET PARITY

By pressing the ENTER key one accesses the selection of the parity bit type. The possible values are: nonE (absent parity bits), odd (uneven parity bits) e EVEn (even parity bits).
(!) nonE

<< Word >> SET WORD

By pressing the ENTER key one accesses the selection of the number of data bits. The possible values are: 8 (8 data bits) and 7 (7 data bits).
(!) 8

<< StoPb >> SET STOP BIT

By pressing the ENTER key one can then select the number of stop bits. The possible values are: 1 (1-stop bit) and 2 (2 stop bits)
(!) 1
<<CtS.St. >> SYNCHRONISM SIGNAL
On the serial line set as COM.PRN the indicator can manage a synchronism signal CTS (Clear To Send). A device (like a printer) that is slow in processing the data received, can interrupt the transmission temporarily using this signal.
It is possible to select:
NO.CTS Disable
LOW CTS active low
HIGH CTS active high
EMUCTS Emulation of CTS signal: one is asked to enter the number of characters ($n C h r S$) using 3 digits, which will be transmitted upon each transmission; then one should enter the wait time in milliseconds (tiME), using 4 digits, from a transmission and the next one.

(!) NO.CTS

<< Add. 485 >> 485 ADDRESS

By pressing the ENTER key one accesses the insertion of a code of 2 digits (from 00 to 98) which identify the instrument among those connected in the RS485 transmission mode, on the PC serial port.
NOTE: the 99 code is used as a broadcast address.
(!) 00

\ll ProtoC \gg	SELECTS PROTOCOL
StAnd	Standard
AFXX	AFOX
riPE 6	Dini Argeo 6-digit repeater
riPLCd	Icd repeater (for 3590E version)
Mondir	Uni-directional
ALibi	Alibi memory
SMA	SMA protocol

For the protocol specifications, see section 5.4
(!) StAnd
<< PC.ModE >> TRANSMISSION TYPE
rEquE. On request
Cont. Continuous
StAbiL On stability
-485-485 mode
For the transmission mode specifics, see 5.5 section.
(!) rEquE.

<<CoMAuX >> AUX SERIAL CONFIGURATION

<< bAud >> SET BAUD RATE

By pressing ENTER one can select the data transmission speed (measured in Baud = bit/second). The possible values are: 2400, 4800, 9600, 19200, 38400, 57600, 115200.
(!) 9600
<< PAritY >> SET PARITY
By pressing ENTER one can select the parity bit type. The possible values are: nonE (absent parity bit), odd (uneven parity bit) and EVEn (even parity bit).
(!) nonE

<< Word >> SET WORD

By pressing ENTER one can select the number of data bits. The possible values are: 8 (8 data bits) and 7 (7 data bits).
(!) 8

<<StoP b >> SET STOP BIT

By pressing ENTER one accesses the selection of the stop bit number. The possible values are: 1 (1 stop bit) and 2 (2 stop bits).
(!) 1
<< CtS.St. >> SYNCHRONISM SIGNAL
Not used in this application.

$l<$ ProtoC \gg	SELECTS PROTOCOL
nonE	no protocol
Cont.	continuous transmission
riPE 6	Dini Argeo 6-digit repeater.
(!) nonE	

<< rEM.SCA >> REMOTE SCALE CONFIGURATION (*)(§)

This step allows setting the parameters for managing a remote scale
(*) In case of approved instrument the step is not visible.
(§) It's possible to enable the remote scale only if the SetuP >> SeriAL >> rEAdEr parameter has not been set on "CoMAuX" and the tYPE parameter has been set on "ind.Ch.".

<<EnAb. >> ENABLING REMOTE SCALE

Selection/deselection of the remote scale functioning mode:
Enable enabled
Disable disabled
(!) Disable

<<tErM >> REMOTE SCALE TERMINATOR

In this step one enters the ASCII decimal code (up to 2 characters) of the terminator characters of the weight string (I.E. 13 for CR or 10 for LF).
(!) 000

<< WEi.PoS >> REMOTE SCALE WEIGHT POSITION

In this step one sets the position of the first character of the weight value in the string transmitted by the remote scale, knowing that the first character on the left of the string has the 00 position.
A sign is part of the weight value.
For example, if the received string is spppppppuu + CR + LF:

Received string	s	p	p	p	p	p	p	p	p	\mathbf{u}	\mathbf{u}	CR	LF
Position of the character	00	01	02	03	04	05	06	07	08	09	10	11	12

Therefore one should set the value 00 .
It is possible to set up to 2 characters (from 0 to 99).
(!) 00

<< WEi.LEn >> LENGTH OF REMOTE SCALE WEIGHT VALUE

In this step one enters the number of digits (from 1 to 99) which make up the weight value, including the sign and the non significant digits (for example, if the transmitted string is spppppppu $+\mathbf{C R}+\mathrm{LF}$, in which \mathbf{s} is the weight sign, ppppppp is the weight value, \mathbf{u} is the unit of measure, one should set the value 08).
(!) 01

<< W.tYPE>> WEIGHT TYPE

In this step it's possible to choose whether the previously configured weight value is a gross weight or a net weight:
GroSS Gross weight
nEt Net weight
(!) GroSS

NOTES: The following tare settings are not necessary if the remote scale transmits a string containing both the gross and the tare weights.

<< tAr.PoS >> TARE WEIGHT POSITION

In this step one sets the position of the first character of the tare value in the string transmitted from the remote scale, taking into account that the first character on the left of the string has position 00. It's possible to set up to 3 characters (from 000 to 100); by setting 255, the reading of the parameter is disabled.
(!) 255

<< tAr.Len >> LENGTH OF THE TARE WEIGHT STRING

In this step one enters the number of digits (from 1 to 99) which make up the tare value, including the non significant digits and the decimal point.
(!) 01

<<tAr.tYP >> TARE TYPE POSITION

In this step one sets the position of the first character of the tare type indication (2 characters), in the string transmitted from the remote scale, knowing that the first character on the left of the string has the position 00; it's possible to set up to 3 characters (from 000 to 100); by setting 255, the reading of the preset tare indication is disabled.
If the value in the indication corresponds to "PT" the previously configured tare is considered as preset; otherwise it is considered as a semiautomatic tare.
(!) 255
EXAMPLE:
if the transmitted string is spppppppuu, tttttttuu kk + CR + LF, in which $\mathbf{t t t t t t t}$ is the tare value, $\mathbf{u u}$ is the unit of measure and $\mathbf{k k}$ is the type of tare:

- tAr.PoS: 12
- tAr.LEn: 08
- tAr.tYP: 23

<< Str.LEn >> REMOTE SCALE STRING LENGTH

In this step one enters the number of digits (from 0 to 99) which make up the entire string transmitted from the serial line scale less the terminator character (for example, if the transmitted string is spppppppuu + CR + LF, in which \mathbf{s} is the weight sign, ppppppp is the weight value, uu is the unit of measure, one should set the value 11). Configure 0 in case of variable data string length; the position of the weight characters in the data string can't change.
(!) 01

<< CAPAC. >> REMOTE SCALE CAPACITY

Enter the maximum capacity (up to 6 characters, from 1 to 999999) of the remote scale, taking into account the number of decimals of the scale.
(!) 000001

<< dIV. >> REMOTE SCALE'S DIVISION

Enter the scale's division (up to 3 characters, from 1 to 200). In case of it functions in dual or triple range, enter the lower range division.
(!) 001

<< dECiM.>> REMOTE SCALE'S DECIMALS

Enter the number of scale decimals (from 0 to 5).
(!) 0
<< u.M. >> REMOTE SCALE'S UNIT OF MEASURE
Select the unit of measure of the scale from those suggested: $\mathrm{g}, \mathrm{KG}, \mathrm{t}, \mathrm{Lb}$.
(!) g
The two following parameters allow generating the stability of the weight communicated by the remote scale and allow managing the stability indicator on the indicator:
<< StAb. >> NUMBER OF READINGS PER STABILITY
Enter the number of consecutive readings which the indicator must take into consider in order to obtain stability (max 2 characters, from 01 to 20).
By setting 00 is possible the choosing between "INSTAB. STRING", "STAB. STRING" and "IGNORE STABILITY" by scrolling up and down with F6 and F7.

- by pressing ENTER it's possible to enable the reading of the instability/stability in the string transmitted from the remote scale; one sets in sequence:

1) the position of the instability indication, in the string transmitted from the remote scale, knowing that the first character on the left of the string has the position 00; it's possible to set up to 3 characters (from 000 to 100); by setting 255 , the reading of the instability is disabled and the weight is considered as stable.
2) the instability string, in other words, the characters transmitted from the remote scale when the weight is unstable (up to 3 characters):
If the value in the instability indication corresponds to the set value, the weight is considered to be unstable; otherwise, it is considered as stable.
By pressing \mathbf{C} the instability check is disabled and the weight is considered to be always stable.
(!) 03

<< StA.int >> WEIGHT DIFFERENCE PER STABILITY

Enter the maximum value (2 characters, from 0 to 20) which can be taken on by the difference between the weights of the consecutive readings, set in the previous step.
If the weight difference between the readings is equal or less than the set value, the weight is considered to be stable (stability indicator off), otherwise the weight is considered to be unstable (stability indicator on).
(!) 02

<< round.S >> ROUNDING

Enable Enabled
Disable Disabled
(!) Disable

EXAMPLE:

WEIGHT SENT BY REMOTE SCALE
" 41.6375 g G $0.5006 \mathrm{~g} \mathrm{T"}$
If the parameters are enabled, the displayed weight will be " 41,638 ". display shows
If the parameters are disabled the displayed weight will be "41.637". display shows
<<Zero >> TRANSMISSION OF SCALE ZERO COMMAND FROM THE INDICATOR In this step one can enable the Zero scale transmission command: the command (not configurable) is \mathbf{Z} followed by a "CR".
diSAbLe disabled
EnAbLE enabled
(!) Disable

<<tArE >> REMOTE SCALE TARE SENDING

In this step one can enable the transmission of the Tare command from the indicator:

Disable

Enable >> One will be requested to enter the command that is to be transmitted (up to 3 alphanumeric characters) followed by a "CR".
(!) Disable

<< Man.tAr >> REMOTE SCALE MANUAL TARE

In this step one can enable the transmission of the manual Tare command from the indicator:

Disable

VAL.CMd first the value is transmitted and then the tare command
CMd.VAL first the command is transmitted and then the tare value
If one sets VAL.CMd or CMd.VAL one will be asked to enter the command to be transmitted (up to 3 alphanumeric characters) followed by a "CR".
(!) disable

<< rEq.WEi >> REMOTE SCALE WEIGHT REQUEST

In this step one can enable the serial command which will be used to request the string from the remote scale, when it is transmitted upon request.
Disable disabled
Enable enabled >> It will be possible to set the request interval (001..up to 255 hundredths of sec) and the serial command for reading the weight (up to 4 alphanumeric characters).

(!) Disable

NOTE: For the scale configuration of the remote scale, refer to the relative manual.
<< terM.tX >> TERMINATOR IN TRASMISSION
To the commands of required weight, tare and zero is appended this terminator.
$\mathrm{Cr} \quad$ TERMINATOR CR (character 13 from ASCII table)
Cr LF TERMINATOR CR LF (character 13 and character 10 from ASCII table)
LF TERMINATOR LF (character 10 from ASCII table)
no.tErM NO TERMINATOR (for Dini Argeo printers, with standard printing by Dinitools TM)
(!) CR
<< rEAdEr >> READER
Enabling data reception from the external reader (See relative manual)
Disable disabled
CoM.AuX enabled on the ComAux
CoM.Prn enabled on the ComPrn
(!) diSAbLe

<< r71.rEP >> R71 REPEATER

If the R71620 is connected to the indicator, through this step it is possible to enable the dedicated protocol, for the serial ports set with the "riPE 6 " protocol.

Disable	Disabled
Enable	Enabled
(!) Disable	

<< Prn.FMt >> PRINT CONFIGURATION

Through this step one can configure up to 50 print formats directly from the indicator.
In this step it is possible to choose the number of format to be configured; therefore enter, modify or eliminate the print blocks following the instructions shown in section 7 PROGRAMMING THE PRINTOUTS.

<< tErMin >> SET TERMINATOR TYPE

When connecting a printer it is possible to define the end of the print line, in the print blocks provides the terminator print (indication +T , see 7.3 section)
$\mathrm{Cr} \quad$ TERMINATOR CR (character 13 from ASCII table)
Cr LF TERMINATOR CR LF (character 13 and character 10 from ASCII table)
LF TERMINATOR LF (character 10 from ASCII table)
no.tErM NO TERMINATOR (for Dini Argeo printiers, with standard print by Dinitools TM)
(!)no.tErM

<<dEF.Prn >> PRINTOUT DEFAULT

By pressing ENTER one is asked to confirm the activation of the default printouts: the LED display shows "SurE?": press ENTER again to confirm or another key to cancel the operation.
The printout default is valid only for TPR printer.
WARNING: By enabling the printouts, all the formatted print formats will be CANCELLED and the first 8 will be SUBSTITUTED by the standard formats which automatically will be linked to the 8 print functions.

<< Anout >> ANALOGUE OUTPUT (OPTIONAL)

If various scales are connected (see nuM.SCA parameter), the number of the scale to be configured will be

SLot SLOT SELECTION

One selects the SLOT to be used with the analogue output: SLOT 1 or SLOT2.

```
ModE OPERATING MODE
    Ao G = analogue output on the gross weight
    Aon = analogue output on the net weight
```

AoMA MAXIMUM VALUE
Setting of the maximum value of the analogue output.

AoZE ZERO SCALE VALUE

Setting of the analogue output value when the scale displays zero weight.
AoMi MINIMUM VALUE
Setting of the minimum value of the analogue output.

See the 6 "ANALOGUE OUTPUT" section for configuring.

<< inPutS >> INPUT CONFIGURATION

The indicator has 2 inputs on the main board, 6 on the optional expansion board, which may take on the meaning of a specific function key or of any scale function key, among those available; it is therefore possible to emulate a few keys through the corresponding input.

Indicatori serie 3590EKR, 3590EXP, 3590EXT, CPWE, CPWET
LoC.in KEYBOARD LOCK

OFF TURNING OFF THE INDICATOR
-oK - OK MESSAGE
Error ERROR MESSAGE
rEAdY READY MESSAGE
StArt START MESSAGE
StoP STOP MESSAGE
rL.oFF SETS ALL THE OUTPUTS AT OFF
LnG.KEY SETS KEY PRESSED AT LENGTH
LEVEL SETS LEVEL CHECK
MNU.FUN EXECUTION OF A SPECIFIC FUNCTION
Select from a menu the function to execute every time the relative input is activated. The menu lists all the functions contained in the table described at paragraph 3.2 (<<F.kEyS>>).
r.StArt CYCLE MANAGEMENT ON THE OUTPUTS (dosage)
(!) nonE
The same configurations are valid for:
In. 2 INPUT 2
In. 3 EXPANSION BOARD
In. 4 EXPANSION BOARD
In. 5 EXPANSION BOARD
In. 6 EXPANSION BOARD
In. 7 EXPANSION BOARD
In. 8 EXPANSION BOARD

r.StArt - Dosage cycle management through outputs

Premise: The functioning provides for an input to be set on r.StArt.
The involved outputs are OUT1 and OUT2: in order to function correctly these must be configured with the NC contact on a weight function, for example Set point on the Net or Gross weight.

Upon enabling the input linked to the r.StArt both outputs are enabled; the dosage automatically ends upon reaching the set point linked to OUT2.

Notes:

1) if an input is linked to r.StArt OUT1 and OUT2 are managed in "dosage" even if these are configured in their exclusive functioning;
2) it's possible to execute also dosages in unloading (negative set points) as long as the zeroing or the tare at cycle start is executed (through the input or the key);
3) if input 1 is linked to the tare or to the zero, the dosage starts only if the net weight is zero (this allows to execute an initial compulsory zeroing);
4) it's possible to interrupt at any moment the dosage cycle by enabling an input set on rL.oFF.

for example:

rL. $1=100$ rL. $2=200$ in. $1=$ rL. 0 FF in. $2=r$ r.StArt

- enabling in.2: one enables OUT1 and OUT2 and the dosage cycle starts.
- upon reaching 100 g the rL. 1 disables OUT 1.
- upon reaching 200g the rL. 2 disables OUT 2 and the dosage cycle ends.
- by enabling in. 1 the dosage cycle resets at any point.

<< output >> OUTPUT CONFIGURATION

The indicator has 4 outputs on the main board and 12 outputs on the optional expansion board; through this step one configures the functioning of each output.See the section 15.4 "FUNCTION OF SET POINTS" in the user manual for the functioning mode specifications.

<< r.ConF >> OUTPUTS' CONFIGURATION

In this step it is possible to configure the normal status, the switching condition and the functioning mode for each output.

rL. 1 OUTPUT 1 (OUT 1)

<< no/nC >> NO/NC CONTACTS
By pressing ENTER one sets the status of the output after the instrument start-up: normally open (n.o.) or normally closed (n.C.).
NOTE: with indicator turned off, the status of the output is normally open.
(!) n.o.

<< onStAt >> SWITCHING CONDITION

By pressing ENTER one sets the output activation condition:
drCt DIRECT: it is activated as soon as the weight reaches the set threshold, (independently from the stability), and it is deactivated as soon as it goes under the disabling threshold.
StbL UPON STABILITY: it is activated in the moment in which the weight, after reaching the set activation thresholds, becomes stable and is disabled in the moment in which the weight, goes below the configured disabling threshold and becomes stable.
(!) drCt
<< rL.iSt >> HYSTERESIS
This step allows selecting the outputs functioning mode with or without hysteresis:
iSt.on functioning with hysteresis
iSt.oFF functioning without hysteresis
(!) iSt.oFF

<<rLFunC >> FUNCTION

This step allows selecting the output functioning mode:
nonE NO FUNCTIONING (disabled relay).
GroSS GROSS SETPOINT (activation of the relay on the gross weight).
$n E t \quad$ NET SETPOINT (activation of the relay on the net weight).
Gro. $0 \quad 0$ GROSS (activation of the relay on the gross weight at 0).
$\mathrm{nEt} .0 \quad 0$ NET (activation of the relay on the net weight at 0).
Motion INSTABILITY (activation of the relay upon weight instability).
toAL TOTALISATION (activation of the relay when totalisation is made).
t.W. 1 PARTIAL TOTAL (activation of the relay on the net partial total + net weight on the scale).
t.W. 2 GENERAL TOTAL (activation of the relay on the net general total + net weight on the scale).
t.W. 3 GRAND TOTAL (activation of the relay on the net grand total + net weight on the scale).
nEt.nEG NEGATIVE NET SET POINT (enabling the relaty on the negative net weight).
(!) nonE
The same configurations are valid for:
rL. 2 OUTPUT 2 (OUT2),
rL. 3 OUTPUT 3 (OUT3),
rL. 4 OUTPUT 4 (OUT4),
rL.. 5 OUTPUT 5 (OUT5), EXPANSION BOARD
rL.. 6 OUTPUT 6 (OUT6), EXPANSION BOARD
rL.. 7 OUTPUT 7 (OUT7), EXPANSION BOARD
rL.. 8 OUTPUT 8 (OUT8), EXPANSION BOARD
rL.. 9 OUTPUT 9 (OUT9), EXPANSION BOARD
rL.. 10 OUTPUT 10 (OUT10), EXPANSION BOARD
rL.. 11 OUTPUT 11 (OUT11), EXPANSION BOARD
rL.. 12 OUTPUT 12 (OUT12), EXPANSION BOARD
rL.. 13 OUTPUT 13 (OUT13), EXPANSION BOARD
rL.. 14 OUTPUT 14 (OUT14), EXPANSION BOARD
rL.. 15 OUTPUT 15 (OUT15), EXPANSION BOARD
rL.. 16 OUTPUT 16 (OUT16), EXPANSION BOARD

<<r.ModE >> OUTPUTS' CONFIGURATION

norMAL The check is always made on all the configured outputs; therefore each output is independently (its enabling does not provoke the disabling of the others).
EXCLuS Starting from the last output up to the first its activation excludes the check on the previous ones (the activation provokes the disabling of the previous out puts) and its disabling reenables it.
(!) norMAL

<< inF.rEd >> INPUT CONFIGURATION

Entering the step one can choose one of four types of remote control shown:

- None (no remote control enabled)
- IR 4 (4 keys infrared remote control)
- IR 18 (18-key infrared remote control)
- IR 19 (19-key infrared remote control)
- RD 6 (6 keys radio remote control)
- RD.BR 6 (6 keys radio broadcast remote control)

The remote control keys repeat the keys' functions (both the ones obtained with a SHORT pressing as well as those with a LONG pressing).

If the weight indicator provides for a 4-key remote control or a 6-key remote control (optional) it's possible to personalise the configuration of the keys of the infrared ray remote control; it may be done as follows:

kEy 11 key 1 ("ZERO" on remote control)	
nonE	NO INPUT
tArE	TARE KEY
ENTER/Fn	ENTER/Fn KEY
C	C KEY
2ndF	2ndF KEY
ENTER/Fn	ENTER/Fn KEY
Point	DECIMAL POINT
F1	F1 KEY
F2	F2 KEY
F3	F3 KEY
F4	F4 KEY
F5	F5 KEY
F6	F6 KEY
F7	F7 KEY
F8	F8 KEY
F9	F9 KEY
F10	F10 KEY
- 0 -	NUMERIC ZERO KEY
-1-	ONE KEY
-2-	TWO KEY
- 3 -	THREE KEY
-4-	FOUR KEY
-5-	FIVE KEY
-6.	SIX KEY
-7-	SEVEN KEY
- 8 -	EIGHT KEY
-9 -	NINE KEY
PLt - 0	ENABLE REMOTE SCALE
PLt -1	ENABLE SCALE 1
PLt-2	ENABLE SCALE 2
PLt - 3	ENABLE SCALE 3
PLt-4	ENABLE SCALE 4
LoC.in	KEYBOARD LOCK
oFF	TURNING OFF THE INDICATOR

Indicatori serie 3590EKR, 3590EXP, 3590EXT, CPWE, CPWET

- oK -
 OK MESSAGE

Error ERROR MESSAGE
rEAdY READY MESSAGE
StArt START MESSAGE
StoP STOP MESSAGE
rL.oFF SETS ALL THE OUTPUTS AT OFF
LnG.KEY SETS KEY PRESSED AT LENGTH
LEVEL SETS LEVEL CHECK
MNU.FUN EXECUTION OF A SPECIFIC FUNCTION
(!) nonE
The same configurations are valid for:
kEy 2 key 2 ("Tare" on the remote control)
kEy 3 key 3 ("F1 Mode" on the remote control)
kEy 4 key 4 ("F2 Print" on the remote control)
If the weight indicator provides for a 18-key remote control (optional) it's possible to choose the configuration of the keys of the infrared ray remote control (USER MAN.REF).

MNU.FUN - Execution of a specific function

Select from a menu the function to execute when pressing the relative key on the remote control. The menu lists all the functions contained in the table described at paragraph 3.2 (<<F.kEyS>>).

NOTE: The function of the prolonged pressure of the keys is also repeated on the remote control.

<< t.LoCK >> TARE LOCKED/UNLOCKED
 Enable LOCKED TARE
 Disable UNLOCKED TARE

See the 7.6 "TARE LOCKED/UNLOCKED" (USER MAN.REF.) sections for the functioning specifics.
NOTE: during the weighing it is possible to lock / unlock the tare by pressing at length the F5 key.
(!) Enable

<<ZOOM.W >> WEIGHT ZOOM (§)

ZOOM.W

- Disable
- Enable
- Disable

- Enable

See section 5.1 (USER MAN.REF.) for the functioning details.
(!) Enable, 005 sec
(§) This step is visible only in case of CPWE/CPWET indicator.

<< PoW.oFF >> AUTO SWITCH OFF

One enables/disables the auto switch-off after the scale is not used for 5 minutes, with plate unloaded.
EnAbLE auto switch-off ENABLED
diSAbLe auto switch-off DISABLED
(!) diSAbLe

<< bt.StAt >> BATTERY LEVEL INDICATION

One selects whether to enable or disable the software check of the battery charge level: each time that the charge goes down of a level, it is notified through the symbols on the display (battery icon). See section 4.2.2 USER MAN.REF..
Enable check ENABLED
Disable check DISABLED
(!) Disable
NOTE: by enabling the indication of the battery level, the backlight automatically switches off when there is no keyboard activity for at least 15 seconds.

<< bACkuP >> INSTRUMENT DATA BACKUP

By pressing ENTER the indicator display shows SurE?: press the ENTER key to confirm or \mathbf{C} to cancel the operation. In the first case, one is asked to enable or not a password.
In the default steps: standard default, technical default, clearing of buffered ram, prints default or keys default, if a backup of the data is present, is asked if one wants to execute the normal default by pressing the ENTER key or to restore the saved data by pressing the F1 key.

<<dFLt>> STANDARD DEFAULT

By pressing ENTER the indicator activates the LCD default parameters, (shown in bold and preceded by the exclamation point at the end of each step) and the default printouts; the display shows SurE?: press ENTER to confirm or C to cancel the operation.

NOTE: THE CALIBRATION, THE DATABASES, THE INPUT TEXTS and the HEADING ARE NOT CANCELLED.

<< dFLt.t >> TECHNICAL DEFAULT (*)

By pressing ENTER the indicator activates the default parameters (shown in bold and preceded by an exclamation point at the end of each step), the default printouts, initialises the database, cancels the input texts, the heading and THE CALIBRATION; the display shows SurE?: press the ENTER key to confirm or C to cancel the operation.
(*) In case of approved instrument the step is not accessible.

<< PWd.SEt >> SET ACCESS PASSWORD TO SET-UP ENVIRONMENT

One configures whether to enable or disable the access password to the technical menu:
Enable password ENABLED
Disable password DISABLED
By selecting EnAbLE, the instrument predisposes itself for the password entry, made up of up to 5 digits; when finished entering confirm with ENTER.
The settable values go from 0 to 65534 .
See section 3 for the functioning specifics.
(!) Disable

<< ini.AL >> INITIALIZES ALIBI MEMORY (*)

The initialisation cancels all the data stored in the Alibi memory; by pressing ENTER one is asked to confirm the operation. The display shows SurE?; press ENTER again to confirm or another key to cancel.
At the end the " oK " message appears if the operation is made with success; otherwise the "Err" message is displayed.
(*) In case of approved instrument the parameter is not accessible.

<< d.SALE >> DIRECT SALE (*)

- no limitations disabled
- yES limitations enabled

Refer to the user manual for the functioning description (USER MAN.REF.).
(!) no
If limitations are enable, the next step shows:
REM.DSP: REMOTE DISPLAY
no remote display disabled
yES remote display enabled
(!) no
(*) In case of approved instrument the parameter is not accessible.

<<PC.KEYb >> PC KEYBOARD SETUP

<<KEY.uSE >> KEYBOARD PORT USE

norMAL Use of the external PC keyboard (see in the user manual the section 4.1.5.
rEAdEr Enabling data reception from external reader (See relative manual)
(!) norMAL
<<LAYout >> EXTERNAL PC KEYBOARD LANGUAGE
uS.En American/English
dEut German
FrAn French
itAL Italian
(!) uS.En

<< diAG. >> DIAGNOSTICS MENU

It's a submenu inside of which it is possible to check the software and hardware components of the scale, accessible also during the weighing, keeping the F4 key pressed at length.

<<PrG.UEr>> FIRMWARE

Software version check.

<< WEiGht >> WEGHT

By pressing ENTER the display shows:

If various scales are connected independently by pressing the F6 / F7 keys it is possible to select the scale to be checked.

<< MiLLiV >> MILLIVOLT

Check of the load cell signal in millivolts, in three decimals.

If various scales are connected independently by pressing the F6 / F7 keys it is possible to select the scale to be checked.
In the case the load cell is not connected or faulty, or the A/D converter is faulty, it is possible that floating values are shown, or the message "Err.C.XX" appears (in which XX is the number of channel / digital load cell on which the faulty is detected), if the signal exceed the underload / overload value of the converter.
To check if the A/D converter is faulty, disconnect the channel on which the faulty is detected and make a short between SIG+ and SIG-; with non faulty A/D converter a mV value proxime to 0.000 will be displayed.

<< ADC.Pnt >> CONVERTER POINTS

Check of the A/D converter points.
By pressing ENTER the display shows:

If various scales are connected independently by pressing the F6 / F7 keys it is possible to select the scale to be checked.
In the case the load cell is not connected or faulty, or the A/D converter is faulty, it is possible that floating values are shown, or the message "Err.C.XX" appears (in which XX is the number of channel / digital load cell on which the faulty is detected), if the signal exceed the underload / overload value of the converter.
To check if the A/D converter is faulty, disconnect the channel on which the faulty is detected and make a short between SIG+ and SIG-; with non faulty A/D converter a point value close to 0 will be displayed.

<< diSPLA >> DISPLAY

By pressing ENTER the instrument shows the display version and the led turns on.
By pressing a key all the leds (in the 3590E version) and LCD display pixels turn on for some seconds, after that the indicator exit automatically from the step.

<< kEyb. >> KEYBOARD

By pressing ENTER the instrument displays 0 ; by pressing the keys one at a time, the relative codes are rebrought to the display. One exits pressing the same key three times.

<<CtS.St. >> CTS STATUS

By pressing ENTER the CTS signal type of the connected printer is shown on the display.
If the second CTS is enabled is possible scroll up and down with the rows to see the status of both CTS.

<< B.Level >> BATTERY LEVEL

By pressing ENTER one views on the display the value of the battery input on the motherboard, read by the analogdigital converter.

<< Power >> POWER SUPPLY VOLTAGE

By pressing ENTER the display shows the value of the power adapter input on the motherboard, read by the analogue-digital converter.

<< rELE >> RELAY TEST

By pressing ENTER it is possible to test all the available relays; by selecting these one at a time with the arrow keys, these are activated:

$$
\text { RL. } 01 \quad \text { OUT1 }
$$

<< inPutS >> INPUT TEST

By pressing ENTER it's possible to test the status of the inputs; the display will show:

in which the number on the first line identifies the input:

1	IN1	
\ldots	IN2	
2	Inputs of the motherboard	
3	IN3	
\ldots		
8	IN8	

and the number each input corresponds to its status:
0 = disabled;
1 = enabled.

<< Anout >> ANALOGUE OUTPUT

If the instrument is fitted with the analogue output, through this step one can test if the values of the D/A converter (to be entered at time of calibration) correspond with the relative values of the analogue output (in voltage or in current), see section 6 .
By pressing ENTER the display shows 0 ; enter a value between 0 and 65535 and confirm with ENTER; the instrument will supply the corresponding analogue value in output.
To exit the test confirm twice with ENTER the same entered value.

<< SEr. >> SERIAL PORTS TEST

By pressing ENTER it's possible to redirect the data received by any serial port, on other serial ports.

<< SEr.nuM >> SERIAL NUMBER

Diagnostics check for use of the manufacturer.

<< P.TEST >> PRINTOUT TEST

One can choose the number of format to print by inserting the correspondent code. By choosing the format 00 all the formats are printed in succession.

<<EV.LOG >> EVENTS LOG

This function shows and allows also to print, a list of the events generated by the indicator. Events are divided in the following categories:

- metrical: calibration, equalization
- battery: power on, power off, changing of the power supply (battery, mains)
- keyboard: pressed keys
- setup operations: default, restore from backup, setup saving
- firmware update
- network

For each category are present the last 10 events with the indication of the Date/Time of happening. By pressing the F5 key the list is printed.

3.3 SCALE CALIBRATION

The instrument offers the possibility of using the 4 channels of the A / D converter in order to obtain 4 independent weighing systems (therefore "independent channels") or 1 weighing system, with digital equalisation of 4 channels (therefore "dependent channels").

With independent channels, each connected system must be calibrated on its own, with its own capacity, division, and unit of measure.

With dependent channels, the weighing system will be connected to 2,3 or 4 channels of the converter, and besides the calibration, one must carry out the equalisation (useful for managing pallet truck scales or scales with various load cells).

3.3.1 CALIBRATION PROCEDURE

1) Enter the setup of the instrument;
(at start-up, press for an instant TARE key while the instrument version is displayed)
2) Select the type of desired system; enter the tyPE step and select with the $\nabla \Delta$ keys:

- ind.Ch: up to 4 independent weighing systems.
- dEP.Ch: 1 weighing system with various cells.

Confirm with ENTER.
3) Set the number of used channels; enter in the nuM.SCA step and select with the $\boldsymbol{\sim}$ arrow keys:

- rEMotE: only for remote scale (calibrations are not carried out)
-n.SC. 1
-n.SC. 2
- n.SC. 3
- n.SC. 4

4) Enter in the configuration menu of the calibration in other words SEtuP \gg ConFiG \gg CALIB and press ENTER.
5) Select the scale to be configured with the $-\Delta$ keys (only if tyPE = ind.Ch and nuM.SCA >1) and press ENTER.
6) Execute the equalisation (only if tyPE = dEP.Ch), as described in section 3.3.5.
7) Select the calibration menu, in other words, CALib and press ENTER; if the equalisation of point 6 has not been made (only if tyPE = dEP.Ch), the display will show "no Eq?", confirm with ENTER to carry out the calibration nevertheless.
8) Set the number of calibration decimals: select the dECiM. step and press ENTER, with the $\boldsymbol{\Delta}$ keys move the decimal point in the desired position and press ENTER.
(!) 0.000
9) Set the unit of measure: select the u.M. step and press ENTER, with the $\boldsymbol{-}$ - keys select the unit of measure: grams (G), kilograms (kG), tons (t) or pounds (Lb) and press ENTER.
(!) kg
10) Select the number of calibration range and confirm with ENTER:

- if there is only one measuring range, select 1 and confirm with ENTER;
- with various fields (up to 3), the type of scale will be requested: select M.rAnGE (if a multirange scale) or M.diViS (if a multidivisional scale) and confirm with ENTER.

11) Set the division of the scale or the division of the first range: select the diV. 1 step and press ENTER, with the $-\Delta$ keys select the value $(1,2,5,10,20,50,100,200)$ and press ENTER.
(!) 1
NOTE: if the range number set in step 8) is equal to 1 , pass directly to point 16)
12) Set the capacity of the scale or the first range: select the CAP. 1 step and press ENTER, set the value (minimum 100 maximum 999999) and press ENTER.
TAKE NOTE: enter the whole value including the decimal digits; for example if the capacity should be over 6 kg and the division $0.001 \mathrm{~kg}(=1 \mathrm{~g})$, set 6000 , or if the capacity should be 1500 kg and the division 0.5 kg , set 15000 .
(!) 0.100
13) Set the division of the second range: select step diV. 2 and press ENTER, with the $\boldsymbol{\sim} \rightarrow$ keys select the value $(1,2,5$, 10, 20, 50, 100, 200) and press ENTER.
(!) 1
14) Set the second range: select step CAP. 2 and press ENTER, set the value (minimum 100 maximum 999999) and press ENTER.

NOTE: if the range number set in step 8) is equal to 2 , pass directly to point 17)
15) Set the division of the third range: select step diV. 3 and press ENTER, with the $\boldsymbol{\sim} \Delta$ keys select the value $(1,2,5$, 10, 20, 50, 100, 200) and press ENTER.
16) Set the third range: select step CAP. 2 and press ENTER, set the value (minimum 100 maximum 999999) and press ENTER.
17) Carry out the acquisition of the calibration points: select the CALib.P step and press ENTER.

The instrument will request the following in this order:
Number of signal linearization points: the "CALIBRATION POINTS" message will appear followed by " 1 " enter the value (from 1 to 8 points, besides ZERO) and press ENTER.

ZERO points: the message "UNLOAD THE SCALE AND PRESS ENTER" appears; unload the scale and press ENTER.

First linearization point: "Point 1" message will appear followed by the request to enter the value of the calibration weight; enter the value with the numeric keyboard; put the weight on the scale and press ENTER.

Following calibration points: as the above
18) After the calibration is made, the message "CALIBRATION MADE" appears on the display;
19) If one needs to calibrate other scales, press the C key various times until the display shows "SELECT THE SCALE"; select the following scale that is to be calibrated and repeat all the operations from point 7 .

If, on the other hand, the calibration is done, press various times the C key until the instrument asks to save and confirm with ENTER.

3.3.2 LINEARISATION POINTS

By entering in the SEtuP >> ConFiG >> CALib >> PointS step it's possible to access a menu which allows to view/modify the linearization points of the last calibration made:

POINT	ADC.POINT	WEIGHT
0	72461	0.00
ACT. 1	182567	1.00

POINT	ADC.POINT	WEIGHT
1	182567	0.00
ACT. 2	279939	1.89

POINT	ADC.POINT	WEIGHT
8	OOOOOOX	YOOOX.OO
ACT. 8	$100000 \times$	OOOOXOX

KEYS' FUNCTIONS

F1	inserts a linearization point
F2	deletes a linearization point.
F3	copys a linearization point (waiting stability).
F4	copys ADC.POINT data (waiting stability).
F5	quickly copys ADC.POINT data (without waiting stability).
F6	scrolls forward the points.
F7	scrolls backward the points.
F8	moves cursor from right to left to select parameter, and press ENTER key, one is asked to enter desired value.
F9	moves cursor from left to right to select parameter, and press ENTER key, one is asked to enter desired value.
2nd F	switch from ADC.POINT to mV
HELP	show keys function
ENTER	modifies a point (weight and converter points); while entering it confirm the values.
C	exits the programming; one is asked to save (the display shows ACTIVATE NEW CALIBATION ?"): with ENTER one confirms, with another key one exits without saving. While entering a code, it quickly zeros the present value.

3.3.3 ZONE OF USE DIFFERENT THAN THE ZONE OF CALIBRATION:

If the zone of use is different than the calibration zone, one should:

1) Enter in the Set-up of the instrument;
(upon start-up, press for an instant the TARE key while the instrument version is displayed)
2) Enter in the configuration menu of the metric parameters, in other words, SEtuP >> ConFiG and press ENTER.
3) Set the calibration zone: enter in the GrAV step and set the gravitational acceleration value of the CALIBRATION ZONE.
4) Execute the calibration, following the procedure shown in section 3.3.1.
5) Set the zone of use: enter in the GrAV step and set the gravity acceleration value of the ZONE OF USE.
6) Press various times the C key until the instrument asks to save and confirm with ENTER.
7) The weight error caused by a different gravity attraction value between the zone of calibration and the zone of use is automatically corrected.

3.3.4 QUICK ZERO CALIBRATION

Useful for calibrating only the ZERO point when a permanent tare weight is put on a platform (for example a roller unit).

1) Enter in the instrument set-up;
(upon start-up, press for an instant the TARE/ZERO key while the instrument version is displayed)
2) Enter in the configuration menu of the metric parameters, in other words, SEtuP \gg ConFiG and press ENTER.
3) Select the scale to be configured with the $\boldsymbol{\bullet}$ keys (if nuM.SCA >1) and press ENTER.
4) Select the 0.CALib step and press ENTER; the message "UNLOAD THE SCALE AND PRESS ENTER" appears.
5) Put the preset tare to be cleared on the scale or unload the scale and press ENTER
6) Once calibration is made, the message "ZERO CALIBRATION MADE" will appear on the display; press ENTER and the scale returns to the ParAM step; in case one needs to calibrate other scales, press the C key, select the following scale to be calibrated and repeat all the operations from point 2.

If, otherwise, the calibration is done, press various times the C key until the instrument asks to save and confirm with ENTER.

3.3.5 CELL EQUALISATION PROCEDURE

NOTE: this procedure may be selected only if tYPE = dEP.Ch (dependent channels).
Furthermore, for this procedure it is advisable to use a weight of at least $1 / 3$ of the capacity.

1) Enter in the instrument set-up; (upon start-up, press for an instant the TARE key while the instrument version is displayed).
2) Enter in the configuration menu of the metric parameters, in other words SEtuP >> ConFiG and press ENTER.
3) Enter in the equalisation step: select the EquAL step and press ENTER

NOTE: the system asks to confirm " rESEt ? " before entering in this step because by continuing one will reset the previous memorised equalisation.
4) Select the Eq 0 step (equalisation of the zero): the message "EQUALISATION ZERO" will appear unload the weighing system and press ENTER.
5) Select the Eq 1 step (equalisation of the first channel): the message "EQUALISATION CHANNEL 1" will appear put a calibration weight on the connected cell and press ENTER.
6) Select the Eq 2 step (equalisation of the second channel): the message "EQUALISATION CHANNEL 2" will appear put the same calibration weight on the connected cell and press ENTER.
7) Select the Eq 3 step (equalisation of the third channel): the message "EQUALISATION CHANNEL 3" will appear put the same calibration weight on the connected cell and press ENTER.
8) Select the Eq 4 step (equalisation of the fourth channel): the message "EQUALISATION CHANNEL 4" will appear put the same calibration weight on the connected cell and press ENTER. (§)
9) Proceed with the calibration

3.4 REMOTE SCALE CONFIGURATION
 Example of configuration with a DFW06 as remote scale set with extended string:

[CC]B,hh,NNNNNNNNNN,YYTTTTTTTTTTT,PPPPPPPPPP,uu,(dd/mm/yybbhh:mm:ss|"NO DATE TIME") <CR LF>
in which: [CC] INSTRUMENT CODE IN THE FORMAT OF TWO ASCII DECIMAL DIGITS JUST IN CASE THE 485 PROTOCOL IS SELECTED (FOR EXAMPLE 00)

B scale number (always 1).
, Comma character
hh UL Underload
OL Overload
ST Stability of display
US Instability of display
TL Active inclination input
, Comma character
NNNNNNNNNN net weight on 10 characters including possible sign and decimal point
, Comma character
YY "PT" if the tare is manual, otherwise $\mathrm{YY}=$ " " (two empty spaces) if the tare is semiautomatic.
TTTTTTTTTT Tare weight on 10 characters including possible sign and decimal point.
, Comma character
PPPPPPPPPP Number of pieces on 10 characters, equal to 0 if the indicator is in a functioning mode other than the counting mode.

Comma character
uu Unit of measure "Kg" "bg" "bt" "lb
, Comma character (only with REXD command)
$\mathrm{dd} / \mathrm{mm} / \mathrm{yy} \quad$ Date in the "dd/mm/yy" format (only with REXD command)
bb 2 space characters, 32 decimal ascii characters (only with REXD command)
hh:mm:ss Time in the "hh:mm:ss" format (only with REXD command)
<CR LF> Carriage Return + Line Feed (ascii decimal character 13 and 10).
The insignificant digits of the net, tare, gross tare weights and the pieces' number of the various channels will be filled with spaces (space character, 32 decimal ASCII code characters)
In the case in which the optional "Real Time Clock" board is not detected or it is not set, the weight is transmitted but not the date and time; "NO DATE TIME" is in its place.

Parameters to set in the setup environment:

Parameter	Extended String
EnAb.	Enable
tErM	010
WEi.PoS	05
WEi.LEn	10
W.tyPE	NET
tAr.PoS	18
tAr.LEn	10
tAr.tYP	16
Str.LEn	43
CAPAC. (\#)	XXXXXX
diV. (\#)	XXX
dECiM. (\#)	X
u.M. (\#)	XX
StAb.	00
In.Str?	Instability string position
StA.int	Instability string
round.S	02
Zero	Disable
tArE	Enable
MAn.tAr	Enable
rEQ.WEi	Tare command >> T
	CMD.VAL.
	Tare command >> W
	Enable

[^0]
4. DISPLAY OF THE SCALE GRAVITY ACCELERATION AND CORRECTION OF THE WEIGHING ERROR DUE TO THE DIFFERENT GRAVITY ACCELERATION BETWEEN THE CALIBRATION AND THE UTILISATION ZONE

This instrument conforms to the laws currently in force regarding non-automatic weighing instruments.
Such g-sensitive instruments are influenced by the gravitational acceleration value " g " of the utilisation zone hence it is compulsory to indicate, with a label or on the display, the value of " g " of the utilisation zone where the weighing machine can be used.
So a special programme has been created to compensate for any differences in the gravitational attraction between the place where the weighing machine is calibrated and the place of utilisation.
During configuration the " g " values relative to the utilisation zone and to the zone of calibration are entered at a certain programming step which eliminates the weight error introduced by the different gravitational attraction value.
The instrument displays, upon start-up by pressing the $2 n d F$ key, the " g " value relative to the gravitational zone of use for a few seconds, after the name and the installed software version.

5. SERIAL OUTPUTS

The indicator is fitted with two bi-directional serial ports, both having the output in ASCII code compatible with a wide range of printers, remote displays, PCs and other devices; in the set-up it is possible to freely combine these ports to the available configurations ("ComPC", "ComPrn", and "ComAux").

	AMP connector		Terminal board		
Slgnal	COM1/COM3 (RS232)	COM2 (RS232)	COM1 (RS232)	COM2 (RS232)	COM3 (RS485)
TX	1	1	14	18	$22 \mathrm{~A}(+)$
RX	2	2	15	19	$23 \mathrm{~B}(-)$
GND	6	6	16	16	-
CTS	2	3	15	17	-

By the step SEtuP >>SEriAL >> PortS it is possible select the function of the serial ports:

Parametro	COM 1	COM 2	COM 3
PC.Pr.AX (!)	ComPC	ComPrn	ComAux
PC.AX.Pr	ComPC	ComAux	ComPrn
Pr.PC.AX	ComPrn	ComPC	ComAux
Pr.AX.PC	ComPrn	ComAux	ComPC
AX.PC.Pr	ComAux	ComPC	ComPrn
AX.Pr.PC	ComAux	ComPrn	ComPC

ComPC: data transmission/reception to PC/PLC, printer, repeater.
ComPrn: data transmission to printer, repeater
ComAux data transmission/reception to printer, repeater, remote scale, barcode reader.
!! IMPORTANT !!
THE CONNECTION AND THE SOFTWARE CONFIGURATION OF THE SERIAL PORTS MUST BE MADE BY TECHNICAL PERSONNEL WHO KNOWS THE PROCEDURES ON THE BASIS OF THE USER'S NEEDS.
The data transmission cable must be kept away from the AC power supply lines.
!! REMOVE VOLTAGE BEFORE OPENING THE INSTRUMENT !!
THE STANDARD CONFIGURATION OF THE SERIAL PORTS IS THE FOLLOWING:
Baud rate $=9600$, Parity $=$ None, Data word $=8$, Stop bit $=1$, CTS signal $=$ No Cts. The configuration may be modified in the SET-UP environment in the << SERIAL >> step.

5.1 RS 485 CONNECTION

IMPORTANT:

- Respect the electrical precautionary measures indicated in section 1.

Below is the RS485 connection of the indicator in the CoM3:

Meaning	Indicator Serial line
$T X-/ R X-$	$23 \mathrm{~B}(-)$
$\mathrm{TX}+/ \mathrm{RX}+$	$22 \mathrm{~A}(+)$

On the same RS 485 line it's possibile to connect up to 32 devices, among indicators, digital load cells, $485 / 232$ signal converter.

Disp. 1

Disp. 2

...

...
Disp. n

Figure 1: electrical diagram of RS485 connections.

- Use a STP (Shielded Twisted Pair) cable in order to make the connection (twisted and shielded pair/s with single shielding for each pair through aluminium band and total shielding through external sheathing).
- The maximum reachable length from the line with the use of the appropriate cable for RS 485 connections, the twisted 2×24 AWG duplex cable, shielded with external sheathing + aluminium band, is of about 1200 meters (see section 1.1.3)
- With very long cables, the cable capacity (normally near 50pF/m) starts being a dominant factor in the power consumption and increases with the increase of speed.
This implies that the maximum distance can not be covered with the maximum possible speed. For an approximate value, one can consult the following table:

Baud rate	Total capacity of the cable (pF)
1200	400000
2400	200000
4800	100000
9600	50000
19200	25000
38400	12000
57600	8000
115200	4000

As a general rule, if one has any doubts, it is always preferable to choose the cable with a greater section.

- Verify that the grounding satisfies the requirements of section 1.2. Especially, all the digital masses, as well as the analogue masses, and the power circuits, must be connected to the grounding bar and this last one must be connected to the grounding pole.
- The shielding can be connected into a single point of the entire network (as shown in Figure 1) or both its ends, however it's important that all the masses have the same potential, in order to avoid the forming of current rings.
- On the RS485 network normally one connects 2 termination resistances equal to the characteristic impedance of the cable (tipically 120Ω, see Figure 1), ONLY on the 2 devices which are at the 2 ends of the cable. The terminal resistance is not supplied with the ports of the indicator.
- The difference of potential between the $\mathrm{A}(+)$ and $\mathrm{B}(-)$ terminals in rest conditions (for example with instrument in set-up phase), must be of at least $0,2 \mathrm{~V}$.
To create a resistive divider which maintains this difference of potential also when all the transmitters are disabled, inert in the RS485 port of the indicator where there are the termination resistances, the polarisation or fail-safe resistences (RFs in Figure 1). The value of these resistances is between 390Ω and $2,2 \mathrm{k} \Omega$.

NOTE: in particular, the value of each of these resistances must be greater than the value calculable through the formula:

$$
R_{F S}=\frac{R_{e q}}{2} \times\left(\frac{V_{d c}}{0,2}-1\right)
$$

in which:

- $V_{d c}$ is the power supply voltage of the line
- $R_{\text {eq }}$ is the overall resistance to the $A(+)$ a $B(-)$ heads, supplied by the parallel of the 2 termination resistances and all the input resistances of the devices connected to the bus.

Presuming that a connection has 120Ω as termination resistance and 32 connected devices, each having an input impedance of $12 \mathrm{k} \Omega$. The $\mathrm{V}_{\text {dc }}$ power supply is 5 V .
One calculates $R_{\text {eq }}$, equal to about 52Ω, and $R_{\text {Fs }}$ which must be at least equal to 624Ω.

- The connection between the indicator and the digital load cells is made with RS485 protocol in the COM3 configured as CoMAuX. The indicator can be connected with up to 16 digital load cells.
- It's possible to connect the indicator to digital load cells with 4854 -wire protocol through $422 / 232$ converter. In this case one is required to connect the double TX of RS422 cable to TX+ and TX- converter's pins and the double RX of RS422 cable to RX+ and RX- converter's pins
- In case of connection with non Dini Argeo devices, there may be different ways of line marking: generally one presumes that the A / B indication corresponds to the $+/-$ and HI/LO markings, but this is not always true. Therefore, if the device does not function, one should try inverting the connections even if everything seems to be correct.
- For the correct functioning of the digital load cells, one should, in any case respect all the rules given in the relatvive specific manuals.

5.2 PC CONNECTION

9 PIN CONNECTOR

INDICATOR	$\mathbf{9}$ pin Collector	Color
TX	3	Yellow
RX	2	Pink
GND	5	Grey

RJ45 CONNECTOR

INDICATOR (RJ45 connector)	9 pin Collector	Color
TX6	3	Orange
RX 3	2	Blue/White
GND 5	5	Green/White

5.3 PRINTER CONNECTION

	WTY280 /SMT80 9pin (female)	TMU295/LX300 25pin (female)	LP542 Plus ITTP243/SMTPLUS 9pin (female)	Standard cable
TX	3	3	3	Pink
CTS	4	20	8	Brown
GND	7	7	5	Grey

TPR	STANDARD CABLE
GND	Black
CTS	Yellow
RX	Grey

TPR printer power supply		
	STANDARD CABLE	Terminal box
$+V P$ e $+V C$	Red and Orange	5 Vaux
GND e GND	Black and Black	16 GND

5.4 TRANSMISSION PROTOCOLS

STANDARD
The weight data transmission on the serial port happens in the following format:
[CC]HH,KK,PPPPPPPP,UM<CR LF>
in which:
[CC] = instrument code, es. 00 (only with RS485 protocol)
$\mathrm{HH}=\mathrm{UL} \quad$ Underload
OL Overload
ST Weight stability
US Weight instability
Comma character
KK = NT Net Weight
GS Gross Weight
PPPPPPPP $=\begin{aligned} & \text { Comma character } \\ & \text { Weight (} 8 \text { digits including the possible } \text { sign and decimal point })\end{aligned}$, Comma character
$\mathrm{UM}=$ Unit of measure (Kg, g, t, lb)
<CR LF> Carriage Return + Line Feed (ASCII Characters 13 and 10)
AFOX STRING
[available for ComPc]
The weight data transmission on the serial port happens in the following format:
[CC]SS,B,LLLLLLLLLLUM,YYTTTTTTTUM,KKKKKKKA,XXXXXXXP<CR LF>
in which: [CC] = instrument code, es 00 (only with RS485 protocol)
SS UL Underload
OL Overload
ST Weight stability
US Weight instability
, Comma character
B Scale Number
Comma character
LLLLLLLLLL Gross weight (10 digits including the possible sign and decimal point).
$\mathrm{UM}=\quad$ Unit of measure $(\mathrm{Kg}, \mathrm{g}, \mathrm{t}, \mathrm{lb})$
Comma character
YY $\quad-2$ spaces if the tare is semiautomatic, or

- PT if a tare is pre-set or set manually

TTTTTTTTTT Tare weight (10 digits including the possible sign and decimal point).
$\mathrm{UM}=\quad$ Unit of measure (Kg, g, t, lb)
Comma character
KKKKKKK Current amount (7 characters, including an eventual decimal point)
A Indicates that the previous data is the current price amount
, Comma character
XXXXXXX Active product price (7 characters, including an eventual decimal point)
$\mathbf{P} \quad$ Indicates that the previous data is the price
<CR LF> Carriage Return + Line Feed ASCII 13 and 10

Transmission protocol for connection to a Dini Argeo weight repeater. It transmits the weight value shown to the Dini Argeo weight display.
In this case, the setting of the PC.Mode "TRANSMISSION TYPE" parameter has no relevance.

LCD REPEATER

With this transmission protocol, it is possible to repeat the messages shown on the LCD display.
The data is transmitted in the following format:

XXXXXXXXXXXXXXXXYYYYYYYYYYYYYYYY + CR + LF

In which: | XXXXXXXXXXXXXXXX | $=$ Data shown on the first line of the LCD display |
| ---: | :--- |
| YYYYYYYYYYYYYYYY | $=$ Data shown on the second line of the LCD display |
| CR | $=$ Carriage Return |
| LF | $=$ Line Feed |

MONODIRECTIONAL

Through this communication protocol the serial command management is excluded, in order to avoid possible responses to data received from the port in case of use of the 485 serial line; it can be useful when one uses the port for transmitting a printout, and various devices are connected on the same 485 line. With this protocol the data and serial command reception is disabled.

ALIBI MEMORY
[available for ComPc, ComPrn]
If the indicator is fitted with the alibi memory, one should set this parameter in order to store the weighs using the print key and transmitting the string through the PC serial port; see the protocol specifications in the "ALIBI MEMORY" section in the user manual.
NOTE: in the ComPrn the string will not be transmitted.

SMA

[available for ComPc]
Serial communication protocol of the Scale Manufacturers Associations (SMA). See relative manual.

PROFIBUS

[available for ComPc]
Standard protocol, see relative manual.

MODBUS

[available for ComPc]
Standard protocol, see relative manual.

NO PROTOCOL"

Set in case of connection to remote scale or badge / bar code reader (serial ports).
"PRINT"
[available for ComPrn]
The weight data transmission on the serial port depends on the print functions of the indicator.
For further details see section 7 "PROGRAMMING THE PRINTOUTS" and section 14 "PRINTOUTS" USER MAN.REF.

5.5 TRANSMISSION MODES

Data transmission from PC Serial Port can be done in 4 different ways:

TRANSMISSION ON REQUEST

It requires an external command from the PC to send the data requested. Transmission can take place at any time requested.

CONTINUOUS TRANSMISSION

- ComPC: Continuous transmission of the standard string (ProtoC = StAnd step) or of the extended AFOX string (ProtoC = AFOX step) or continuous transmission of the customised string.
This mode is used for interfacing to the computer, remote displays, and other devices which require a constant update of the data independently from the weight stability (10 transmissions per second with a Baud rate at 9600 and stable weight).
- ComPrn: The indicator transmits continuously the data configured in the 01 print format.

Alternatively, by setting only the " 300 " block in the 01 print format, it is possible to transmit the STANDARD STRING (or the AFOX STRING, if configured for the PC port).
For configuration details of the print formats, see section 7.

- ComAux: The weight transmission on the serial port takes place with the STANDARD protocol.

TRANSMISSION ON STABILITY

Transmission is automatic each time the weight put on the platform reaches stability ("~" pilot light off); the minimum transmission limit is of 10 divisions with a NON APPROVED instrument and 20 divisions with an APPROVED instrument. The reactivation of the transmission takes place depending on how the F.modE >> rEACt "REACTIVATIONS" parameter of the SET-UP environment has been set (passage by zero of the net weight or weight instability).

RS485 TRANSMISSION

On request an RS485 Half Duplex serial output can be installed, enabling the possibility of bi-directional communication up to 32 indicators to just one computer.
The transmission protocol is the same as that of transmission upon request, with the adding of a code that identifies the weight indicator (i.e. "00READ <CR LF>").

5.6 SERIAL COMMANDS FORMAT

LEGEND	
[CC] 0 <ll>	instrument code, e.g. 00 (only with RS485 protocol)
<CR LF>	Carriage Return + Line Feed (ASCII characters 13 and 10)
<ESC>	ASCII character ASCII 27
<STX>	ASII character ASCII 02
B	space character, ASCII 32.

SERIAL ERRORS

Upon each serial command received the instrument transmits a string containing the answer (see the command description) or it transmits one of the following indications:

OK<CR LF>	it is shown when a correct command is transmitted from the PC to the indicator. The OK answer does not imply that the instrument executes the zero.
ERR01<CR LF>	it is shown when a correct command is transmitted from the PC to the indicator however it is followed by letters inserted involuntarily (I.E.: READF, TARES...).
ERR02<CR LF>	it is shown when a correct command is transmitted from the PC to the indicator, but containing wrong data.
ERR03<CR LF>	it is shown when a non allowed command is transmitted. It may be a command not used in the selected functioning mode or the command reaches the indicator in the instant in which the keyboard buffer is already occupied by another command
ERR04<CR LF>	it is shown when an inexistent command is transmitted.
NOTE: The instrument doesn't transmit any indication with the short commands, like the ones made up of only one letter and then the possible parameter.	

Version reading:

Instrument response:
In which:

Data reading:

Instrument response:
Semiautomatic tare:

Preset tare:

in which:

Checked tare:

Instrument's answer:

Zero:

Checked zero:

Instrument's answer:

Clear:

Reading of extended weight string:

[CC]VER<CR LF>

[CC]VER,vvv,E-AF05bb<CR LF>
vvv is the firmware version
[CC]READ<CR LF> or: [CC]R<CR LF>
see Transmission Protocol

[CC]TARE<CR LF> or: [CC]T<CR LF>

[CC]TMANTTTTTT <CR LF >or: [CC]WTTTTTT<CR LF>

W=command
TTTTTT = tare in ASCII, max 6 characters
Example: W10.0 <CR LF>

[CC]TAREB<CR LF>

[CC]OK<CR LF>: tare executed
[CC]KO<CR LF>: tare is not allowed (tare disabled, weight instability, weight in overload, etc.)

[CC]ZERO<CR LF> or: [CC]Z<CR LF>

[CC]ZEROB<CR LF>
[CC]OK<CR LF>: zero executed
[CC]KO<CR LF>: zero is not allowed (weight instability, weight in overload, etc.)
[CC]CLEAR<CR LF> or: [CC]C<CR LF>
[CC]REXT<CR LF>
[CC]B,hh,NNNNNNNNNN,YYTTTTTTTTTT,PPPPPPPPPP, MMMMMMMMMM,uu<CR LF>

in which: $\quad[\mathrm{CC}]=$	INSTRUMENT CODE IN THE FORMAT OF TWO ASCII DECIMAL DIGITS
	ONLY WHEN THE 485 PROTOCOL IS SELECTED (FOR EXAMPLE 00)
$B=$	scale number (zero for the remote scale)
,=	Comma character (ASCII decimal 44)
hh $=$	UL Underload
	OL Overload
	ST Stability of the display
	US Instability of the display
,=	Comma character (ASCII decimal 44)
NNNNNNNNNN =	net weight on 10 characters including sign and decimal point
,	Comma character (ASCII decimal 44)
$Y Y=$	"PT" if the tare weight is entered with the keyboard, otherwise $\mathrm{YY}=$ " " (two space characters) if the tare weight is weighed
TTTTTTTTTT =	tare weight on 10 characters including sign and decimal point
,	Comma character (ASCII decimal 44)
PPPPPPPPPP =	number of pieces on 10 characters, pieces equal to 0 if the indicator is not in a counting functioning mode
,=	Comma character (ASCII decimal 44)
MMMMMMMMMM $=$	A.P.W.
,=	Comma character (ASCII decimal 44)
uu =	Unit of measure "Kg" "bg" "bt" "lb
$\mathrm{CR}=$	Carriage Return (ascii character decimal code 13)
LF =	Line Feed (ascii character decimal code 10)

Net/Gross change:

Print:

Checked print:
Instrument's answer:

Scale switch:

in which:

[CC]NTGS<CR LF>

[CC]PRNT<CR LF> or [CC]P<CR LF>

[CC]PRNTB<CR LF>

[CC]OK<CR LF>: print executed
[CC]KO<CR LF>: print is not allowed (weight instability, print not reactivation, cts error, etc.)
[CC]CGCHn<CR LF> or[CC]Qn<CR LF>
n = scale number (from 1 to 4)
Example:Q1+CR

Viewing temporarily message on the display:

[CC]DISPNNVVVVVV<CR LF>

in which:
NN: display number of the indicator, (00 for 3590E display / CPWE-CPWET weight section, 01 for 3590E LCD display / CPWE-CPWET data section)
V : character to be shown (at least 1 , cut off at the number of characters visualised by the shown display)
[CC]OK<CR LF>
Instrument's answer:
The message remains for the time which set with the DINT command; if one selects to view the message permanently on a display and one wants to cancel the operation, send the DISPNN command without any message: the display, specified in the command, (NN) goes back to viewing the usual information relative to the selected functioning mode.

Setting display visualisation interval:

[CC]DINTXXNNNN<CR LF>

in which:
XX: code which identifies the display (00 for 3590E display/ CPWE-CPWET weight section, 01 for 3590E LCD display / CPWE-CPWET data section) NNNN:
visualisation interval (in milliseconds), N is an ascii hex character; for example, to set a visualisation time of 2 seconds (therefore 2000 milliseconds), which converted in hex become 07DO, the command becomes DINT07DO<CR><LF>.

By setting NNNN $=0000$, the transmitted message with the DISP command (see above), remains permanently shown on the selected display.
Instrument's answer:
[CC]OK<CR LF>

With approved instrument

- For the 00 display (00 for 3590E LED display / CPWE-CPWET weight section the maximum settable time is 5 seconds (5000 milliseconds).
- One should wait for the end of the current visualisation before being able to view the next one.

Reading of converter points relative to the weight: [CC]RAZF<CR LF>

Instrument's answer:
In which:
[CC]SS,RZ,RRRRRRRRRR,vv<CR LF>
SS UL Underload
OL Overload
ST Stability of the weight
US Instability of the weight
RRRRRRRRRR Value of converter points (10 characters)

Reading of microvolts relative to the weight:
 [CC]MVOL<CR LF>

Instrument's answer: In which:

[CC]SS,VL,MMMMMMMMMM,uv<CR LF>
SS UL Underload
OL Overload
ST Stability of the weight
US Instability of the weight
MMMMMMMMMM Value of microvolts (10 characters)

Reading of net weight with sensitivity times 10: \quad [CC]GR10<CR LF>

Instrument's answer:
[CC]SS,GX,VVVVVVVVVV,UM<CR LF>
In which:
SS UL Underload
OL Overload
ST Stability of the weight
US Instability of the weight
GX Weighing times 10 status
VVVVVVVVVV Value of net weight times 10 (10 characters)
UM Unit of measure ($\mathrm{Kg}, \mathrm{g}, \mathrm{t}, \mathrm{lb}$)
NOTE: The instrument does not transmit the OK answer to the short commands (R, T, Z, P....).

Modification of GR10 command response:

in which:
[CC]GR10X<CR LF>
GR10= command
$X \rightarrow E$ enabled
$X \rightarrow \mathrm{D}$ disabled
Example: GR10E<CR LF>

If enabled, it modifies the format of the GR10 command response string: it responds to the GR10 command with the number of the active scale in the place of the " GX - weighing status $\times 10$ ").

The setting is valid when the indicator is turned off. To save it permanently in the instrument one should transmit the command in the set-up status.

Setpoint command:
in which:

[CC]STPTntxxxxxxtyyyyyy<CR LF>

n , expressed in hexadecimals, indicates the number of SETPOINTS $(1,2,3,8,9$, A, B, C, D, E, F).
$t \rightarrow F$ if the following weight value indicates the DISABLING of the relays (OFF). $t \rightarrow 0$ if the following weight value indicates the ENABLING of the relays (ON). xxxxxx e yyyyyy take on the enabling or disabling setpoint value: the digits must be entered WITHOUT decimal point, omitting the NON significant zeros.

Example in case of instrument with $10,000 \mathrm{~kg}$ capacity and 1 g division:

Command : STPT1F500006500 (Disabling of first relay at 5 kg and enabling at $6,5 \mathrm{~kg}$)
Answer: OK
NOTE: The negative answer of the instrument (NO), takes place in the following conditions:

- One of the two entered values surpasses the capacity.
- One of the two entered values has a minimum division which is incongruent with the one set in the instrument.
- The disabling value surpasses the enabling one.

AFXX type string reading and scale information: $\quad[C C] R A L L<C R ~ L F>~$

Instrument answer:
[AFXX string]B,NNNNNNNUM,LLLLLLLUM,PPPPPPPN,SSS,AAA,CCC,TTT,XXXXX-YYYYYYY<CR LF> in which:
[String AFXX] See the "AFOX type protocol" in the paragraph "TRANSMISSION PROTOCOLS".

B	Number of platform on which the totalisation has been made. Comma character (ASCII decimal 44)
NNNNNNNUM	Last net weight totalized with unit of measure.
Comma character (ASCII decimal 44)	

Indicatori serie 3590EKR, 3590EXP, 3590EXT, CPWE, CPWET

Counter of pressed keys.
Comma character (ASCII decimal 44)
Code of last key pressed.
Comma character (ASCII decimal 44)
Counter of totalisations.
Last rewriting number stored in the Alibi memory. ASCII decimal 45 character
Last weigh number stored in the Alibi memory.

Bridge data between serial port:

Instrument's answer:
[CC]BRIDGEX<CRLF>
BRIDGE=command
$X \rightarrow 1=$ COMPC \rightarrow COMPRN
$X \rightarrow 2=$ COMPC \rightarrow COMAUX
EXAMPLE: BRIDGE1
[CC]OK<CR LF>

This serial command allows to create a bridge from the pc port to another. After 10 seconds of silence the instrument back to the state before sending the command.
In the state of bridge between the serial, the instrument shows "BRIDGE" on the LED display, and the bridge serial ports on the LCD display (ex. "COM1 <-> COM2").

LEGEND

[CC]= instrument code, i.e. 00 (only with RS485 protocol).
<CR LF>= Carriage Return + Line Feed (ASCII characters 13 and 10).

Reading of the instrument's serial number:

Reading of the board's information:

[CC]BOARD<CRLF>
aaa loader version in hex form (e.i. 203 for loader 2.03)
bbb board ID (numeric value)
CcC board revision (numeric value)
ddd hardware config. (numeric value)
xxx serial number
nnn board name (up to 8 characters)

BINARY COMMANDS FOR THE PROFIBUS PROTOCOL

Request for scale configuration: [CC]GETC<CR LF>Instrument answer:N.bytes:
485 address in ASCII 485 address in ASCI 2
Number of configured channels 2
Range 1 4
Range 2 4
Range 3 4
Div. 1 2
Div. 2 2
Div. 3 2
Decimals 2
Unit of measure
($1=\mathrm{g}, 2=\mathrm{kg}, 3=\mathrm{t}, 4=\mathrm{lb}$) 2
APW Decimals 2
APW Unit of measure 2
CRC Checksum as Modbus 2

NOTE: The answer from "Range 1" to "APW unit of measure" is repeated for each configured channel.

5.7 ADVANCED COMMANDS

[GKBB] Reading of the data in the keyboard buffer:
This following command allows for the reading of the data in the keyboard buffer (max 20 keys) (only if the transmission of the pressed keys code is disabled):

Syntax

Format	<CC>GKBB<CR LF>
Parameters	-
Answer	$-<C C>O K<C R ~ L F>~ i f ~ t h e ~ b u f f e r ~ i s ~ e m p t y ~$ - If the buffer is not empty, two hexadecimal characters for each key, in the order in which these have been pressed, from left to right.
Example	01GKBB<CR LF> Result If for example, with empty keyboard buffer, the 1, 2, 3, 4, 5, 6 keys have been pressed, the instrument answer will be the following: <ESC>0B0CODOEOF10<CR LF>

NOTE: the reading of the keyboard buffer causes the cancellation.
[EKBB] Cancellation of the data inside the keyboard buffer:
With this command it is possible to cancel the contents of the keyboard buffer (only in the case in which the transmission of the pressed keys' code is disabled):

Syntax

Format	<CC>EKBB<CR LF>
Parameters	-
Answer	<CC>OK<CR LF>
Example	$01 E K B B<C R ~ L F>~$
Result	Cancellation of the keyboard buffer

[OUTP] Enabling/disabling of the relay output:
Syntax

Format	<CC> OUTPNVVVV <CC> OUTPNNVVVV <CR LF>
Parameters	- $\mathrm{N}=$ output number (expressed in hexadecimals) - 0 to enable simultaneously all the outputs - from 1 to 4 to identify the single output of the motherboard from 8 to F to identify the same output (only up to OUT11) of the expansion board - $\mathrm{NN}=$ output number (expressed in hexadecimals) - 00 to enable simultaneously all the outputs - from 01 to 0 to identify the single output of the motherboard and from 08 to $O F$ to identify the single output (up to OUT11) of the expansion board - 10 to enable the 12 outputs (OUT12) of the expansion board. - VVVV = enabling/disabling code; - for the single output, $\mathrm{V}=0000$ disabled, while $\mathrm{V}=0001$ enabled. - all the outputs (in other words, $\mathrm{N}=0$), the value identifies the outputs to be enabled (expressed in hexadecimals);
Response	<CC>OK<CR LF> The response does not imply that the command has been made.
Example	010UTP00412<CRLF>or010UTP000412<CR LF>
Result	Configuration of the outputs (see below the suggested explanation)

A bit is ascribed to each output:

Expansion board outputs (optional)												Motherboard outputs			
OUT 16	OUT 15	OUT 14	OUT 13	OUT 12	OUT 11	OUT 10	OUT9	OUT 8	OUT 7	OUT 6	OUT 5	OUT 4	OUT 3	OUT 2	OUT 1
$\begin{aligned} & \hline \text { Bit } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 13 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 11 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 10 \end{aligned}$	$\begin{gathered} \text { Bit } \\ 9 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 8 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 0 \end{gathered}$

The bit at 1 is interpreted as active output, while the bit at 0 as disabled output.
If, for example, one wants to enable the OUT5 and OUT11 outputs of the optional board and OUT2 of the motherboard the binary combination will be

Expansion board outputs (optional)

OUT 16	OUT 15	OUT 14	OUT 13	OUT 12	OUT 11	OUT 10	OUT 9	OUT 8	OUT 7	OUT 6	OUT 5	OUT 4	OUT 3	OUT 2	OUT 1
Bit															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0

Which, in hexadecimals, corresponds to the number 0412; therefore the command will be OUTP $\underline{00412}+\mathrm{CR}+\mathrm{LF}$ or OUTP000412 + CR + LF.

NOTES:

- The outputs enabling command does not work neither in the set-up environment nor in the weighing phase; if the set point mode has been selected and the output function is different than "nonE". (ref. output step, rLFunC parameter).
[INPU] optoisolated input reading:
INPUN + CR + LF

Sintax

Format	<CC>INPU<N><CR LF>
Parameters	N = input number (expressed in hexadecimals): - 0 to simultaneously read all the inputs. - from 1 to 2 to identify the single input of the Motherboard and from 3 to 8 to identify the single input of the Expansion board.
Answer	<CC>INPUNVVVV <CR LF> $\mathrm{N}=$ input number (expressed in hexadecimals), described previously VVVV = input \inputs status: - for the single input, $\mathrm{V}=0000$ means input not active, while $\mathrm{V}=0001$ active input. - for all the inputs (in other words $\mathrm{N}=0$), the returned value corresponds to the hexadecimal codification of the status of the inputs
Example	01 INPU0 <CR LF>
Result	Reading of indicator's inputs' status (see the following explanation).

Unhandled bits								Expansion board inputs (optional)						Motherboard inputs	
								in. 8	in. 7	in. 6	In. 5	in. 4	in. 3	in. 2	in. 1
$\begin{aligned} & \hline \text { Bit } \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 14 \end{aligned}$	Bit 13	$\begin{aligned} & \hline \text { Bit } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 11 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 10 \end{aligned}$	$\begin{gathered} \hline \text { Bit } \\ 9 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 8 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 0 \end{gathered}$

Therefore if the INPU00026 string is received, the hexadecimal value, converted into binary, indicates that the status of the inputs is the following:

Unhandled bits								Expansion board inputs (optional)						Motherboard inputs	
								in. 8	in. 7	in. 6	in. 5	in. 4	in. 3	in. 2	in. 1
Bit															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0

The active inputs are therefore in. 6 , in. 3 of the optional board and in. 2 of the motherboard.

NOTES:

- With the bits 8 to 15 , no input is assigned, and are fixed at zero
- The reading command of the inputs works also in the set-up environment
[INUN] Request of a numeric value entry on the 3590E LED display (only for 3590 e version):

Syntax

Format	<CC>INUN<X>, <M >, <H >, <1 >, <L>, <D>, <P><CR LF>
Parameters	$\mathrm{X}=$ numeric or alphanumeric character ($0-9 ; \mathrm{A}-\mathrm{Z} ; \mathrm{a}-\mathrm{z}$) displayable in the digit on the extreme left of the 3590E LED display / CPWE weight section (not modifiable); $M=$ minimum enterable value in decimals ($0 \leq M \leq H$) $\mathrm{H}=$ maximum enterable value in decimals ($0 \leq \mathrm{H} \leq 999$ ' 999 '999'999'999'999, 18 digits). I = value displayed initially in decimals, substituted then by the entered one ($\mathrm{M} \leq I \leq H$); if the entered value is less than the enterable minimum value (M), the minimum value will initially be displayed (M). $\mathrm{L}=$ maximum number of enterable characters in decimals $(0 \leq L \leq 18)$ $D=$ number of decimal digits (in decimals) $\mathrm{P}=$ initial position in decimals of the blinking digit (in other words the position of the first value to be modified). - if $P=0$, the blinking digit is the least significant one - if $P=1$, the blinking digit is the most significant one
Answer	<CC>OK<CR LF>
Example	01INUNt, $0,10000,0,5,3,0<C R$ LF>
Result	The t 00.000 message appears on the 3590E LED display weight section with the least significant digit blinking, while waiting for the entry of a numeric value

If the entered value is greater or less respectively to the maximum or minimum set value, the instrument will emit an error sound signal.

Syntax

Format	<CC>INUA<PP><LL><\|><CR LF>
Parameters	$\mathrm{PP}=$ decimal position from which the entry of the numeric data starts, from left to right. LL = number of characters in decimals which make up the numeric data to be entered I = selection/unselection of the display of an initial value, previously entered in the user buffer (using the WUBU command described later on): -I=0 not displayed $-I=1$ displayed
Answer	<CC>OK<CR LF>
Example	01INUA08071<CR LF>
Result	If preceded by the 01WUBU1234567<CR LF> command, it causes the 1234567 message to be shown on the 3590E LCD display / CPWE-CPWET data section, with the character 1 blinking, starting from the position 08 of the 3590E LCD display / CPWE-CPWET data section (in other words the digit 8). At this point it is possible to set 8 numerical digits which will substitute the displayed ones.

NOTE: If an alphanumeric string is in the buffer, a number of blank spaces corresponding to the number of digits set in LL will be shown on the display, starting from the set cursor position.
[IALA] Request of alphanumeric text entry on the 3590E LCD display / CPWE-CPWET data section:

Syntax

$\left.\begin{array}{|l|l|}\hline \text { Format } & \text { <CC >IALA<PP><LL><|><CR LF> } \\ \hline \text { Parameters } & \begin{array}{l}\text { PP = decimal position from which the entry of the numeric data starts, } \\ \text { from left to right. } \\ \text { Lnumber of characters in decimals which make up the numeric data } \\ \text { to be entered }\end{array} \\ \text { I = selection/unselection of the display of an initial value, previously } \\ \text { entered in the user buffer (using the WUBU command described } \\ \text { later on): } \\ - \text { I = } 0 \text { not displayed } \\ - \text { I } 1 \text { displayed }\end{array}\right]$

When exiting the entry phase, the displayed data is frozen on the 3590E LCD display / CPWE-CPWET data section and it remains until a new serial command does not switch the visualisations (for example a DISP command or a new visualisation entered with the INUA or IALA commands, previously described).
The turning off causes the restoration of the standard weight data.

GINR + CR + LF

Syntax

Format	<CC>GINR<CR LF>
Parameters	-
Answer	Entry of value on the 3590E LCD display / CPWE-CPWET data section case: $-\quad-1$ if one exits from the entry phase with the C key; $-\quad$ Entered value in decimals and confirmed with ENTER; Entry of value on 3590E LCD display / CPWE-CPWET data section case: $-\quad 2$ if one exits from the entry phase with the C key; $-\quad 1$ if the value has been entered and confirmed with ENTER To read the entered string, use the <ESC>RUBU<STX> command described later on
Example	01 OIGR<CR LF>
Result	Reading of the user buffer and transmission of the data read on the PC

Reading and writing of the user buffer:
Premise: the user buffer is the memory area in which the temporary storage of entered data is used (using the indicator keyboard) by the user or made visible by the user.
The previous request commands on the display of data entry, taking advantage of this buffer.

[WUBU] Reading of the user buffer:

Syntax

Format	<CC>WUBU<AAA...A><CR LF>
Parameters	AAA...A is the numeric and/or alphanumeric string (UP TO 32 characters) which are entered in the user buffer
Answer	<CC>OK<CR LF>
Example	01WUBU<ABCDE><CR LF>
Result	The ABCDE string is stored in the user buffer

IMPORTANT: do not modify the user buffer while the instrument is waiting for the data entry: this operation can cause system malfunctioning, which is eliminated only when the instrument is turned off.

[RUBU] Reading of the user buffer:

Syntax

Format	<CC>RUBU<CR LF>
Parameters	-
Answer	<CC>AAAA...A <CR LF> In which AAA...A is the numeric and/or alphanumeric string (UP TO 32 Characters), read in the user buffer. If the number of characters is less than 32, blank spaces will be added in order to complete the 32 transmitted characters.
Example	01RUBU<CR LF> \quad <CR LF>
Result	01STRING \quad

[TOPR] Transmission of numeric and/or alphanumeric string to printer:

Syntax

Format	$<C C>T O P R<X X X \ldots X><C R$ LF>				
Parameters	$X X X \ldots X=$ numeric and/or alphanumeric string which one wants to print				
Answer	<CC>OK<CR LF> The answer does not imply that the command has been made.				
Example	$01 T O P R A B C D E<C R$ LF>	$	$	Result	The ABCDE string will be printed
:---	:---				

TECHNICAL NOTE: The reception and transmission buffers of the indicator are of 256 bytes; knowing that each transmitted character is equal to one byte, the maximum number of characters which can be transmitted is 248. This value changes depending on the transmitted data.

NOTES:

- It is possible to print numeric and alphanumeric characters ($\mathrm{A} . . . Z$, a...z, $0 \ldots 9$), for example TOPRABCabc123 + CR + LF
- It is possible to print ASCII characters by entering the corresponding decimal code (on three digits) preceded by the \character; for example, if one wants to print the message <!!ATTENTION!!>, the command will be the following: TOPR106010331033ATTENTION103310331062+ CR + LF;
- It is possible to print the print blocks by entering the block number preceded by the IM abbreviation; for example, if one wants to print the block 301 NET WEIGHT (see section 7.3 LIST OF PRINT BLOCKS), 302 GROSS WEIGHT, 303 TARE, the command will be the following:
TOPRIM301\M302IM303 + CR + LF
[OIN] Key with which one has exit from the user input
With this command it is possible to know which key the user used to exit the input (ENTER or C).

Syntax

Format	<CC>OIN<CR LF>				
Parameters	-				
Answer	<CC>OIN [<KEY $>\mid$ NO]<CR LF>				
Key	ENT \quad Exited with the Enter key CLR\quad Exited with the Clear key	$	$	Example	010 <CR LF>
:---	:---				
Result	010 INENT<CR LF>				

If the command is wrong one will have the <ESC><\||>OINNO<STX> message.

Simulation of key pressing:

[CC]KEYPXX<CR LF>
in which XX is the code of the pressed key:

CODE	PRESSED KEY
00	F1 key
01	F2 key
02	F3 key
03	F4 key
04	F5 key
05	F6 key
06	F7 key
07	F8 key
08	F9 key
09	F10 key
0A	'0' numeric key
OB	'1' numeric key
OC	'2' numeric key
0D	'3' numeric key
0E	'4' numeric key
OF	'5' numeric key
10	'6' numeric key
11	'7' numeric key
12	'8' numeric key
13	'9' numeric key
14	(.) point key
15	ZERO key
16	ENTER/Fn key
17	2ndF key
18	C key

Response of the instrument: OK<CR LF>: command accepted
If the simulated key has two linked functions (key briefly pressed or at length, like the TARE key), if the KEYP command is followed by the key release command (KEYR) within a maximum time of 1,5 seconds, the simple function will be executed (key briefly pressed); otherwise the second function will be executed (key pressed at length).

Key release simulation:

[CC]KEYR<CR LF>

Response: [CC]OK<CR LF>

LEGEND

[CC]= instrument code, i.e. 00 (only with 485 protocol).
<CR LF>= Carriage Return + Line Feed (ASCII characters 13 and 10).

Selecting / Deselecting an element of database:

[CC]SREC,X,NNNN<CR LF>
Instrument's answer :
In which:

> | [CC]SREC,X,NNNN,EE<CR LF> |
| :--- |
| X |
| database index: |
| 0 |\quad product database

Read selected positon in database:

[CC]GREC,X<CR LF>

Instrument's answer: In which:
[CC]GREC,X,PPPP<CR LF>
X database index:
0 product database
1 ingredients database
2 free text database
3 tare database
4 customer database
PPPP Position number selected in the database
(NULL if no position selected)

Read compiled position and total number of positions in database:

[CC]NREC,X<CR LF>

Instrument's answer:
In which:
[CC]NREC, X,CCCC,TTTT<CR LF>
X database index:
0 product database
1 ingredients database
2 free text database
3 tare database
4 customer database
CCCC Number of compiled position in the database
TTTT Total number of available position in the database

Reading text sections of custom language tool:

[CC]TSECT<CR LF>
Instrument answer:
[CC]12<CR LF>
in which:
$12=$ the indicator have 12 text sections (only for customlanguage software).
If "TSECT" is followed by 2 digits (from 00 to 10), it will show index name of each text section.

5.8 CUSTOMISATION OF THE STRING [available for ComPc, ComPrn]

Personalise string configuration on the ComPC:
the instrument is able to transmit, continuously or in response to the READ command on the port linked to the ComPC, a data string configurable in the print format 100 through Dinitools ${ }^{\top \boldsymbol{T M}}$. To restore the transmission of the strings of the instrument, set only the block "300".
NOTE: format 100 contain up to 50 macros.
Configuration of the customised string on the ComPrn:
The instrument is able to transmit, continuously on the port linked to the ComPrn, a data string configurable in the 01 print format.

For further details in regards to configuring the print formats through Dinitools ${ }^{\text {TM }}$ see the relative manual.

6. ANALOGUE OUTPUT (OPTIONAL)

Through an optional interface, it is possible to use an analogue output a 16 bit configurable at $0-10 \mathrm{~V}, 0-20 \mathrm{~mA}$ or $4-20$ mA .
The voltage and the output current from the interface are proportional to the gross weight or net weight present on the scale. In regards to the electrical connection scheme, see section 8.

6.1 OPERATING MODES

6.1.1 OUTPUT ON THE GROSS WEIGHT

The value of the analogue output grows proportionally to the gross weight on the scale in relation to the configured value for the gross weight at 0 (AO ZE), and the one configured for the gross weight equal to the capacity (AO MA).

When the gross weight is equal or greater than the capacity, the output takes on the value set for AO MA, while in the underload condition (gross weight <=-100d with approved instrument) the output takes on the value set for AO MI.

Trend examples (approved instrument)

A) Lordo $=-100 \mathrm{~d}$
(B) Lordo $=$ Portata

6.1.2 OUTPUT ON THE NET WEIGHT

The value of the analogue output grows proportionally to the net weight on the scale in relation to the value configured for the net weight at $0(A O Z E)$, and the one configured fo the net weight equal to the capacity (AO MA).

When the gross weight is equal or greater than the capacity $+9 e$, the output takes on the value set for AO MA, while in the underload condition (gross weight <=-100d with approved instrument) the output takes on the value set for AO MI.

Trend examples (approved instrument)

A Lordo $=-100 \mathrm{~d}$
(B) Lordo $=$ Portata $+9 e$
(C) Netto $=$ Portata

6.2 CONFIGURATION

In order to configure the parameters, one needs to enter the SET-UP environment in the Anout step inside the SEtuP menu:

If various scales are connected (see the nuM.SCA parameter), the number of the scale to be configured, will be requested; the configurations within this menu must be carried out for each connected scale.

SLot SLOT SELECTION

One selects the SLOT to be used with the analogue output: SLOT 1 or SLOT2; it is possible to indifferently use either SLOT.

ModE OPERATING MODE

$A O G=$ analogue output on gross weight
AO $n=$ analogue output on net weight
Once the functioning mode is confirmed, one sets the values of the analogue output useful for the calculation in the weighing phase, of the value that the output must take on proportionally; in other words, the digital/analogue converter values are entered (between 0 and 65535) to which corresponds a certain output value in voltage or in current. In this configuration the instrument keys take on the following meanings (functions):

Abstract

ENTER By pressing once after a value is entered, it activates the corresponding output analogue value, (allowing the check) but the step still remains inside in case of a new modification. By pressing a second time (on the same entered value) it confirms and exits the step.

C Allows to quickly zero the present value.

NUMERICAL KEYS Allow entering values, from right to left.

AoMA MAXIMUM VALUE

By entering this step, one sets the maximum value of the analogue output, in other words the corresponding value of the full scale capacity. This value can be anywhere between 0 and 65535 (values of the digital/analogue converter); if a higher digit is entered, the instrument emits a prolonged sound, after which it zeros the value just entered.

AoZE SCALE ZERO VALUE

By entering this step, one sets the analogue output value when the scale displays zero weight. This value can be anywhere between 0 and 65535 (values of the digital/analogue converter); if a higher digit is entered, the instrument emits a prolonged sound, after which it zeros the value just entered.

AoMi MINIMUM VALUE

By entering this step, one sets the minimum value of the analogue output. This value can be anywhere between 0 and 65535 (values of the digital/analogue converter); if a higher digit is entered, the instrument emits a prolonged sound, after which it zeros the value just entered.

APPROXIMATE VALUES BETWEEN THE D/A CONVERTER AND ANALOGUE OUTPUT

D/A CONVERTER VALUES	VOLTAGE VALUE (V)	CURRENT VALUE (mA)
1070	0	
1375		0
11500		4
52010	10	20
62450		

7. PROGRAMMING THE PRINTOUTS

It is possible to programme 30 different formats to be linked to the print functions.
Each print vector is linked to a specific print function, for example:

- "S.F.01" function $1 \gg$ print key
- "S.F.02" function $2 \gg$ totalisation
- "S.F.03" function $3 \gg$ partial total

For the complete list of the functions and the linking of the formats, see the "PRINTOUTS" section of the USER MANUAL.
When the printing is requested, the indicator uses the format linked to the vector linked to that printout.
It is possible to configure the formats:

- through the Dinitools ${ }^{\top \mathrm{M}}$ software for PC, and transmitted to the indicator through the serial line; it is necessary that the print format number ("Print Format Number") is a value between 1 and 30 to indicate the format to be overwritten. Once the formats are configured one should carry out the linkages of those functions. (USER MAN.REF.).
- manually from the indicator by entering in the SetuP >> SeriAL >> Prn.FMt step inside the SET-UP environment.

MANUAL CONFIGURATION OF THE PRINT FORMATS

Each format is made up of a maximum of 2048 memory storages (which will be called "lines", from 0 to 2047 ; only the first 1000 are manually modifiable from the indicator), which, when programmed, these will produce the desired printout; in each line one can enter (through a 3-digit code, from 300 onwards) a command named "print block", which will produce a certain type of printout, for example:
PRINT NET WEIGHT (code 301), which will print the net weight value, the unit of measure and the CR or CR LF to go to the next line.
Or it is possible to print a single alphanumeric character, entering the relative ASCII code in the line (from 0 to 255).
To configure a print format:

- Enter in the SetuP >> SeriAL >> Prn.FMt parameter.
- The display shows:
C.F. XX in which:

XX indicates the number of the format to be modified (from 01 to 30)

- Select the print format to be configured using the arrow keys $\boldsymbol{\rightharpoonup}$ and press the ENTER key
- Once entered in a format (for example C.F. 01), the display shows:
XXX.YYY in which:

XXX is number of the line which one is programming.
YYY is the entered code (from 0 to 255 the ASCII code is printed, from 300 onwards the relative block is printed).

- Select the line to be programmed using the arrow keys - - , or by typing the line number through the numeric keyboard, and press the ENTER key.
- The display shows "CHANGE" for an instant and onwards:

Prn.FMt XXX in which:

XXX is the value to be modified.

- Enter a value and press the ENTER key to confirm; the \mathbf{C} key clears the entered value and if pressed again it cancels the operation.
- If a print block with parameters from 600 onwards has been entered, after having pressed the ENTER key the displays shows:
Prn.FMt XXX in which:

XXX is the value to be modified.

- Enter a valid value and press the ENTER key to confirm.
- Once programmed all the desired lines one should enter in the last line block 300 (PRINT END);
- Press the C key to exit; the display will show the saving request; press the ENTER key to confirm or another key to cancel.

KEYS' FUNCTIONS

- scrolls forward inside the lines of the print format.
- scrolls backward inside the lines of the print format.

F1 enters a print block or an ASCII character in the selected line moving the consecutive blocks of one place;
F2 cancels the current line compacting the blocks that follow.
F3 enters a print end in the current line.
ENTER modifies the code in the current line; while entering it confirms the entered code.
C exits the programming; if a format has been modified, one is asked to save (the display shows "SAVE?"): with ENTER one confirms, with another key one exits without saving. While entering a code, it quickly zeros the present value.
NUMERICAL
KEYBOARD
HELP
allows entering a code inside of the selected printing line.
displays the list of the keys used inside this step and their functions. To scroll the list of the keys in manual mode one can use the arrow keys (F6 \vee and F7 $\boldsymbol{\wedge}$).

NOTES

- For the complete list of the ASCII codes and the print blocks, see the sections "ASCII CODE TABLE" and "LIST OF PRINT BLOCKS".
- To terminate the programming of a format, it is necessary that the last command be "Print end": one should enter the code 300 (or press the F3 key) in the last line of the format.

PRINTING ON THE PC SERIAL PORT

By programming a print format correctly, it is possible to direct the printout onto the PC serial port, in order to then bring it to the printer port; the blocks which are used are:
327 (PRINTING ON PC PORT), 328 (PRINTING ON PRINTER PORT), 329 (FORCE PRINTING).
The correct syntax within the format is the following:

- 327 PRINTING ON PC PORT
- print block or ASCII character
- ...
- 329 FORCE PRINTOUT
- 328 PRINTS ON PRINTER PORT

The"Force printout" block executed the transmission of all the blocks or ASCII characters entered BEFORE the block itself; by reading block 329, the printout is directed onto the PC port.

- print block or ASCII character

- 329 FORCES PRINTOUT
- 300 PRINT END

$\xrightarrow[\longrightarrow]{\longrightarrow$| The"Force printout" block executed the
 transmission of all the blocks or ASCII
 characters entered BEFORE the block
 itself; by reading block 329, the printout is
 directed onto the PC port. |
| :---: |
| |
| All the blocks or ASCII characters entered |
| here are transmitted through the printer |
| serial port. |$}$

7.1 PROGRAMMING EXAMPLE

One programmes a format to be linked to a PRINT key vector (S.F. 01 vector) in this way:

MARIO ROSSI SRL
Date - time
Gross weight
Tare weight
Net weight
3 blank lines
Print end

MARIO ROSSI SRL
1/02/2005-19:00:00
GROSS $\quad 2.000 \mathrm{~kg}$
TARE $\quad 0.000 \mathrm{~kg}$
NET $\quad 2.000 \mathrm{~kg}$

After having entered in the SET-UP environment, follow the procedures below:

- Go to step "Prn.F.1", inside the "SERIAL" parameter of the "SETUP" step and press ENTER: the display shows "Prn.FMt 000.xxx" (first line number, macro code).
- Press ENTER, the display shows "Prn.FMt xxx (macro code)": enter the 077 code (ASCII relative to the "M" letter), confirm with ENTER.
- The display now shows "001.xxx " (second line number, fine macro code), press ENTER and enter the 065 code (ASCII relative to the letter " A "); confirm with ENTER to pass to the third line.
- Repeat the operations by entering the following codes:

082 (letter "R")
073 (letter "l")
079 (letter "O")
032 (space)
082 (letter "R")
079 (letter "O")
083 (letter "S")
083 (letter "S")
073 (letter "l")
013 (terminator CR)
032 (space)
013 (terminator CR)
379 (prints date - time)
013 (terminator CR)
032 (space)
013 (terminator CR)
302 (prints gross weight)
013 (terminator CR)
301 (prints net weight)
013 (terminator CR)
303 (prints tare weight)
013 (terminator CR)
032 (space)
013 (terminator CR)
032 (space)
013 (terminator CR)
032 (space)
013 (terminator CR)
300 (print end) ** It is possible to enter the print end also with the F3 key **

- Press the C key to exit the programming: the display shows "SAVE?", confirm with ENTER (one goes back into the "SERIAL" parameter).
- Exit the SETUP environment of the instrument by pressing the C key various times: the display shows "SAVE?", confirm the changes made with ENTER (the instrument returns to weighing).
- Link the configured format to the print key function (see the "PRINTOUTS" section of the user manual).

7．2 ASCII CODE TABLE

7．2．1 CODE PAGE 1252 WINDOWS LATIN 1

	00	01	02	03	04	05	06	07	08	09	0 A	0B	OC	OD	OE	OF
00	$\frac{\mathrm{NUL}}{0000}$	$\frac{\text { STX }}{0001}$	$\frac{50 T}{0002}$	$\frac{\text { ETX }}{0003}$	$\frac{\mathrm{EOT}}{0004}$	$\frac{\text { ENO }}{0005}$	$\frac{\text { ACK }}{0006}$	$\frac{\text { BEL }}{0007}$	$\frac{\mathrm{BS}}{0008}$	$\frac{\mathrm{HT}}{0009}$	$\stackrel{\text { LF }}{000 \mathrm{~A}}$	$\frac{\mathrm{YT}}{000 \mathrm{~B}}$	$\frac{\mathrm{FF}}{000 \mathrm{C}}$	$\frac{\mathrm{CR}}{000 \mathrm{D}}$	$\frac{50}{000 E}$	$\frac{\mathrm{SI}}{000 \mathrm{~F}}$
10	$\frac{\text { DLE }}{0010}$	$\frac{\mathrm{DCl}}{0011}$	$\frac{\mathrm{DC} 2}{0012}$	$\frac{\mathrm{DC} 3}{0013}$	$\frac{\text { DC4 }}{0014}$	$\frac{\mathrm{NAK}}{0015}$	$\frac{\mathrm{SYN}}{0016}$	$\frac{\text { ETB }}{0017}$	$\frac{\mathrm{CAN}}{0018}$	$\frac{\mathrm{EM}}{0019}$	001A	$\frac{\mathrm{ESC}}{001 \mathrm{~B}}$	$\frac{F S}{001 C}$	$\frac{\mathrm{GS}}{0010}$	$\frac{\mathrm{RS}}{001 \mathrm{E}}$	$\frac{\mathrm{US}}{001 \mathrm{~F}}$
20	$\frac{\mathrm{SP}}{0020}$	0021	0022	$\begin{gathered} \text { \# } \\ 0023 \\ \hline \end{gathered}$	$\begin{gathered} \$ \\ 0024 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \frac{\circ}{\circ} \\ 0025 \\ \hline \end{array}$	$\begin{gathered} \mathcal{E} \\ 0026 \\ \hline \end{gathered}$	0027	$\begin{gathered} 1 \\ 0028 \\ \hline \end{gathered}$	$\begin{gathered} \stackrel{1}{0} 029 \end{gathered}$	$002 \mathrm{~A}$	$\begin{gathered} + \\ 002 \mathrm{~B} \\ \hline \end{gathered}$	${ }_{0}^{\prime}$	$002 \mathrm{D}$	$\stackrel{.}{002 \mathrm{E}}$	7
30	$\begin{array}{\|c} 0 \\ 0030 \\ \hline \end{array}$	$\begin{gathered} 1 \\ 0031 \end{gathered}$	$\begin{gathered} 2 \\ 0032 \end{gathered}$	$\begin{gathered} 3 \\ 0033 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 0034 \\ \hline \end{gathered}$	$\begin{array}{\|c} 5 \\ 0035 \\ \hline \end{array}$	$\begin{gathered} 6 \\ 0036 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 0037 \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ 0038 \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ 0039 \\ \hline \end{gathered}$	$003 \mathrm{~A}$	$\begin{gathered} ; \\ 003 \mathrm{~B} \\ \hline \end{gathered}$	$003 \mathrm{C}$	$003 \mathrm{D}$	$\begin{gathered} > \\ 003 \mathrm{E} \end{gathered}$	$\begin{gathered} ? \\ 003 \mathrm{~F} \\ \hline \end{gathered}$
40	$\begin{gathered} \text { © } \\ 0040 \end{gathered}$	0041	0042	$\begin{gathered} \mathrm{C} \\ 0043 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{D} \\ 0044 \\ \hline \end{array}$	$\begin{array}{\|c} \mathrm{E} \\ 0045 \\ \hline \end{array}$	$\begin{gathered} \mathrm{F} \\ 0046 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{G} \\ 0047 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{H} \\ 0048 \\ \hline \end{array}$	$\begin{gathered} I \\ 0049 \\ \hline \end{gathered}$	$\begin{gathered} J \\ 004 \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ 004 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{L} \\ 004 \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} \\ 004 \mathrm{D} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 004 \mathrm{E} \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 004 \mathrm{~F} \\ \hline \end{gathered}$
50	$\begin{gathered} \mathrm{P} \\ 0050 \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ 0051 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 0052 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 0053 \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{T} \\ 0054 \\ \hline \end{array}$	$\begin{gathered} \mathrm{U} \\ 0055 \end{gathered}$	$\begin{gathered} V \\ 0056 \\ \hline \end{gathered}$	$\begin{gathered} \text { 而 } \\ 0057 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{X} \\ 0058 \\ \hline \end{array}$	$\begin{gathered} Y \\ 0059 \\ \hline \end{gathered}$	$\begin{gathered} Z \\ 005 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} {[} \\ 005 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 005 \mathrm{C} \end{gathered}$	$\underset{005 \mathrm{D}}{ }$	$005 \mathrm{E}$	005F
60	0060	$\begin{gathered} a \\ 0061 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{b} \\ 0062 \end{gathered}$	$\begin{gathered} C \\ 0063 \end{gathered}$	$\begin{gathered} \mathrm{d} \\ 0064 \\ \hline \end{gathered}$	$\begin{gathered} e \\ 0 \\ 0065 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f} \\ 0066 \end{gathered}$	$\begin{gathered} 9 \\ 0067 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{h} \\ 0068 \\ \hline \end{array}$	$\begin{gathered} i \\ 0069 \\ \hline \end{gathered}$	$\underset{006 \mathrm{a}}{j}$	$\begin{gathered} \mathrm{k} \\ 006 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 006 \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{m} \\ 006 \mathrm{D} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n} \\ 006 \mathrm{E} \end{gathered}$	$\begin{gathered} \circ \\ 006 \mathrm{~F} \\ \hline \end{gathered}$
70	$\underset{0070}{\mathrm{P}}$	$\begin{gathered} \mathrm{q} \\ 0071 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{r} \\ 0072 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 0073 \\ \hline \end{gathered}$	$\begin{gathered} \text { t } \\ 0074 \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{u} \\ 0075 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ 0076 \\ \hline \end{gathered}$	$\begin{gathered} w \\ 0077 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{X} \\ 0078 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{y} \\ 0079 \\ \hline \end{gathered}$	$007 \mathrm{~A}$	$\begin{gathered} 1 \\ 007 \mathrm{~B} \\ \hline \end{gathered}$	007C	$\begin{gathered} \} \\ 0070 \\ \hline \end{gathered}$	007E	$\frac{\mathrm{DEL}}{007 \mathrm{~F}}$
80	$\begin{array}{\|c} € \\ 20 \mathrm{AC} \\ \hline \end{array}$		$2 \mathrm{c}^{\prime} \mathrm{A}$	$\underset{0192}{f}$	$\begin{gathered} \prime \prime \\ 201 \mathrm{E} \end{gathered}$	$\underset{2026}{ }$	$\begin{gathered} \dagger \\ 2020 \\ \hline \end{gathered}$	$\begin{gathered} \neq \\ 2021 \\ \hline \end{gathered}$	02C6	$\begin{gathered} \vdots \\ 0 . \\ 2030 \\ \hline \end{gathered}$	$\begin{gathered} \text { ̌ } \\ 0160 \end{gathered}$	2039	$\begin{gathered} \text { E } \\ 0152 \end{gathered}$		$\begin{gathered} \text { Zे } \\ 017 \mathrm{D} \end{gathered}$	
90		2018	2019	2015	2010	2022	2013	2014	$020 \mathrm{C}$	2122	$\begin{gathered} \check{y} \\ 0161 \end{gathered}$	$203 \mathrm{~A}$	$\begin{gathered} \propto \\ 0153 \end{gathered}$		$\begin{gathered} \text { ž } \\ 017 \mathrm{E} \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \ddot{Y} \\ 0178 \\ \hline \end{array}$
A0	$\frac{\text { NBSP }}{00 A_{0}}$	$\begin{gathered} i \\ 00 \mathrm{~A}, 1 \\ \hline \end{gathered}$	$\begin{gathered} \zeta \\ 00 \mathrm{~A} 2 \end{gathered}$	$\begin{gathered} £ \\ { }_{00 \mathrm{~A} 3} \\ \hline \end{gathered}$	$00 \mathrm{~A} .4$	$\begin{gathered} \text { I } \\ 00 \mathrm{~A} 5 \end{gathered}$	$\begin{gathered} 1 \\ 1 \\ 00 \mathrm{~A} .6 \end{gathered}$	$\begin{gathered} \text { S } \\ 00 \mathrm{~A} 7 \\ \hline \end{gathered}$	004．8	$\begin{gathered} \text { (C) } \\ 00 \mathrm{~A} 9 \\ \hline \end{gathered}$	00A．A	$00 \mathrm{AB}$	$\underset{00 \mathrm{~A} \mathrm{C}}{ }$	$00 \mathrm{~A} \mathrm{D}$	$\mathrm{Be}_{0}^{\mathrm{E}}$	00AF
B0	00B0	$\begin{gathered} \pm \\ 00 \mathrm{~B} 1 \end{gathered}$	$00 \mathrm{~B} 2$	00B3	00B4	$\begin{array}{\|c} \mu \\ 00 \mathrm{~B} 5 \\ \hline \end{array}$	$\begin{gathered} \mathrm{TI} \\ 00 \mathrm{~B} 6 \\ \hline \end{gathered}$	00 B 7	${ }_{0}{ }^{3}$	$00 \mathrm{~B} 9$	00BA	$00 \mathrm{BE}$	$\begin{gathered} 1_{6} \\ 00 \mathrm{BC} \end{gathered}$	$\begin{gathered} 1 / \Sigma \\ 00 B D \end{gathered}$	$\begin{gathered} 3 / 4 \\ 00 \mathrm{BE} \end{gathered}$	$\begin{gathered} i \\ 00 \mathrm{BF} \end{gathered}$
C0	$\begin{gathered} \grave{A} \\ 00 C 0 \end{gathered}$	$\begin{gathered} \dot{A} \\ 00 \mathrm{C} 1 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A} \\ 00 \mathrm{C} 2 \\ \hline \end{gathered}$	$\begin{gathered} \tilde{\tilde{A}} \\ 00 \mathrm{C} 3 \end{gathered}$	$\begin{gathered} \ddot{\mathrm{A}} \\ \mathrm{OOC} 4 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \stackrel{\circ}{A} \\ 00 C 5 \\ \hline \end{array}$	$\begin{gathered} \text { 恐 } \\ 0006 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 00 \mathrm{C} 7 \\ \hline \end{gathered}$	$\begin{gathered} \text { È } \\ 00 \mathrm{C} 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { É } \\ 0009 \\ \hline \end{gathered}$	$\begin{gathered} \stackrel{\tilde{\mathrm{E}}}{00 \mathrm{CA}} \\ \hline \end{gathered}$	$\begin{gathered} \ddot{\mathrm{E}} \\ \mathrm{OOCB} \\ \hline \end{gathered}$	$\begin{gathered} \grave{\mathrm{I}} \\ 00 \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{I} \\ \mathrm{I} \\ 00 \mathrm{CD} \end{gathered}$	$\begin{gathered} \hat{\mathrm{I}} \\ 00 \mathrm{CE} \end{gathered}$	$\begin{array}{\|c\|} \hline \ddot{\mathrm{I}} \\ 00 \mathrm{CF} \\ \hline \end{array}$
D0	$\begin{array}{\|c} Ð \\ 0000 \\ \hline \end{array}$	$\begin{gathered} \hline \tilde{\mathrm{N}} \\ 00 \mathrm{D} 1 \end{gathered}$	$\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{C} 2$	$\begin{gathered} 66 \\ 0002 \end{gathered}$	$\begin{gathered} \hline 0 \\ 0004 \end{gathered}$	$\begin{array}{\|c\|} \hline \tilde{O} \\ 00 \mathrm{D} 5 \\ \hline \end{array}$	$\begin{gathered} \ddot{O} \\ 00066 \\ \hline \end{gathered}$	$\begin{gathered} \times \\ 0007 \\ \hline \end{gathered}$	$\begin{gathered} \square \\ 0008 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{U} \\ \text { U0099 } \end{gathered}$	$\begin{gathered} \hline \mathrm{U} \\ 00 \mathrm{DA} \end{gathered}$	$\begin{gathered} \mathrm{U} \mathrm{U} \\ 00 \mathrm{~B} \end{gathered}$	$\begin{gathered} \text { Ü } \\ 000 \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 000 \mathrm{D} \end{gathered}$	$\begin{gathered} E \\ \text { OODE } \end{gathered}$	$\begin{gathered} \beta \\ 00 \mathrm{DF} \\ \hline \end{gathered}$
E0	$\begin{array}{\|c} \hline \mathrm{a} \\ \text { 00E } 0 \\ \hline \end{array}$	$\begin{gathered} \text { á } \\ 00 \mathrm{E} 1 \end{gathered}$	$\begin{array}{\|c} \stackrel{a}{a} \\ 00 \mathrm{E} 2 \\ \hline \end{array}$	$\begin{gathered} \tilde{a} \\ 00 \mathrm{E} 3 \\ \hline \end{gathered}$	$\begin{gathered} \ddot{a} \\ 00 \mathrm{E} 4 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{a} \\ \text { 00E5 } \\ \hline \end{array}$	$\begin{gathered} \dot{A} \\ 00 \mathrm{E} 6 \\ \hline \end{gathered}$	$\begin{gathered} \mathcal{G} \\ 00 \mathrm{E} 7 \\ \hline \end{gathered}$	$\begin{gathered} \grave{e} \\ 00 \mathrm{E} 8 \end{gathered}$	$\begin{gathered} \hline \text { é } \\ \text { 00E9 } \\ \hline \end{gathered}$	$\begin{gathered} e \\ \text { é } \\ 00 \mathrm{EA} \\ \hline \end{gathered}$	$\begin{gathered} \ddot{\ddot{C}} \\ \text { 00EB } \end{gathered}$	$\begin{gathered} \text { ì } \\ 00 E C \\ \hline \end{gathered}$	$\begin{gathered} 1 \text { í } \\ \text { OOED } \end{gathered}$	$\begin{gathered} \text { 亿 } \\ \text { 00EE } \\ \hline \end{gathered}$	$\begin{gathered} \ddot{\mathrm{I}} \\ \text { 00EF } \end{gathered}$
F0	$\begin{array}{\|c\|} \hline 8 \\ 00 \mathrm{~F} 0 \\ \hline \end{array}$	$\begin{gathered} \tilde{\mathrm{n}} \\ 00 \mathrm{~F} 1 \end{gathered}$	$\begin{array}{\|c} \hline \grave{2} \\ 00 \mathrm{~F} 2 \\ \hline \end{array}$	$\begin{gathered} 6 \\ 0 \\ 00 \mathrm{~F} 3 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 00 \mathrm{~F} 4 \\ \hline \end{gathered}$	$\begin{gathered} \tilde{6} \\ \text { 00F5 } \\ \hline \end{gathered}$	$\begin{gathered} \ddot{\circ} \\ 00 \mathrm{~F} 6 \\ \hline \end{gathered}$	$\begin{gathered} \div \\ \stackrel{-}{0} 7 \\ \hline \end{gathered}$	$\begin{gathered} \varnothing \\ 00 \mathrm{~F} 8 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{u} \\ \mathrm{u} \\ \hline 0 \mathrm{Fs} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{u} \\ \mathrm{u} \\ \text { 00FA } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{u} \\ 00 \mathrm{FB} \\ \hline \end{gathered}$	$\begin{gathered} \ddot{\mathrm{u}} \\ 00 \mathrm{~F} \\ \hline \end{gathered}$	$\underset{\mathrm{y}}{\mathrm{y}} \mathrm{y}$	p	$\underset{\text { 00FF }}{\ddot{y}}$

	00	01	02	03	04	05	06	07	08	09	On	08	OC	OD	OE	OF
00	$\frac{\mathrm{NUL}}{0000}$	$\frac{\text { STX }}{0001}$	$\frac{\mathrm{SOT}}{0002}$	$\frac{\text { ETX }}{0003}$	$\frac{\mathrm{EOT}}{0004}$	$\frac{\text { ENO }}{0005}$	$\frac{\mathrm{ACK}}{0006}$	$\frac{\mathrm{BEL}}{0007}$	$\frac{\mathrm{BS}}{0008}$	$\frac{\underline{M I}}{0009}$	000A	$\frac{\mathrm{VT}}{000 \mathrm{~B}}$	$\frac{\mathrm{FF}}{000 \mathrm{C}}$	$\frac{\mathrm{CR}}{000 \mathrm{D}}$	$\frac{50}{000 E}$	$\frac{\mathrm{SI}}{000 \mathrm{~F}}$
10	$\frac{\text { DLE }}{0010}$	$\frac{\mathrm{DCl}}{0011}$	$\frac{\mathrm{DC} 2}{0012}$	$\frac{\mathrm{DC} 3}{0013}$	$\frac{\mathrm{DC} 4}{0014}$	$\frac{\mathrm{NAK}}{0015}$	$\frac{\text { SYN }}{0016}$	$\frac{\text { ETB }}{0017}$	$\frac{\mathrm{CAN}}{0018}$	$\frac{\text { EM }}{0019}$	001A	$\frac{\text { ESC }}{001 \mathrm{~B}}$	$\frac{\text { FS }}{001 C}$	$\frac{\text { GS }}{001 \mathrm{D}}$	$\frac{\mathrm{RS}}{001 \mathrm{E}}$	$\frac{\mathrm{US}}{001 \mathrm{~F}}$
20	$\frac{\mathrm{SP}}{0020}$	$\begin{gathered} ! \\ 0021 \\ \hline \end{gathered}$	0022	$\begin{gathered} \hline \# \\ 0023 \end{gathered}$	$\begin{gathered} \$ \\ 0024 \end{gathered}$	$\begin{gathered} \% \\ 0025 \end{gathered}$	$\begin{array}{\|c} \mathcal{G} \\ 0026 \\ \hline \end{array}$	0027	$\begin{gathered} (\\ 0028 \\ \hline \end{gathered}$	$\stackrel{\stackrel{y}{2}}{0029}$	$002 A$	$\begin{gathered} + \\ 002 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} f \\ 002 \mathrm{C} \\ \hline \end{gathered}$	$002 \mathrm{D}$	$\dot{002 \mathrm{E}}$	$/$
30	0030	$\begin{gathered} 1 \\ 0031 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0032 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0033 \\ \hline \end{gathered}$	0034	$\begin{gathered} 5 \\ 0035 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 6 \\ 0036 \\ \hline \end{array}$	$\begin{gathered} 7 \\ 0037 \\ \hline \end{gathered}$	$\begin{array}{\|c} 8 \\ 0038 \\ \hline \end{array}$	$\begin{array}{\|c} 9 \\ 0039 \\ \hline \end{array}$	$003 \mathrm{~A}$	$\begin{gathered} \text {; } \\ 003 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} < \\ 003 \mathrm{C} \\ \hline \end{gathered}$	$003 \mathrm{D}$	$\begin{gathered} > \\ 003 \mathrm{E} \end{gathered}$	$\begin{gathered} ? \\ 003 \mathrm{~F} \\ \hline \end{gathered}$
40	$\begin{gathered} \text { d } \\ 0040 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ 0041 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{B} \\ 0042 \\ \hline \end{array}$	$\begin{gathered} \mathrm{C} \\ 0043 \end{gathered}$	$\begin{gathered} \mathrm{D} \\ 0044 \end{gathered}$	$\begin{gathered} \mathrm{E} \\ 0045 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{F} \\ 0046 \\ \hline \end{gathered}$	$\begin{gathered} G \\ 0047 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H} \\ 0048 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I} \\ 0049 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{J} \\ 004 \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ 004 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{L} \\ 004 \mathrm{C} \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{M} \\ 004 \mathrm{D} \\ \hline \end{array}$	$\begin{gathered} \mathrm{N} \\ 004 \mathrm{E} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 004 \mathrm{~F} \end{gathered}$
50	$\begin{gathered} \mathrm{P} \\ 0050 \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ 0051 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{R} \\ 0052 \\ \hline \end{array}$	$\begin{gathered} S \\ 0053 \end{gathered}$	$\begin{gathered} \mathrm{T} \\ 0054 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{U} \\ 0055 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{V} \\ 0056 \\ \hline \end{array}$	$\begin{gathered} \text { 而 } \\ 0057 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{X} \\ 0058 \\ \hline \end{array}$	$\begin{array}{\|c} \mathrm{Y} \\ 0059 \\ \hline \end{array}$	$\begin{array}{\|c} \hline Z \\ 005 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} {[} \\ 005 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 005 \mathrm{C} \end{gathered}$	$\begin{gathered}] \\ 005 \mathrm{D} \\ \hline \end{gathered}$	$005 \mathrm{E}$	005F
60	0060	$\begin{gathered} a \\ 0061 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{b} \\ 0062 \\ \hline \end{array}$	$\begin{gathered} C \\ 0063 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{d} \\ 0064 \\ \hline \end{gathered}$	$\begin{gathered} e \\ 0065 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ 0066 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{g} \\ 0067 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{h} \\ 0068 \\ \hline \end{array}$	$\begin{gathered} i \\ 0069 \\ \hline \end{gathered}$	${\underset{0}{\mathrm{j}} \mathrm{j}^{2}}^{2}$	$\begin{array}{\|c\|} \hline k \\ 006 \mathrm{~B} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ 006 \mathrm{C} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{m} \\ 006 \mathrm{D} \\ \hline \end{array}$	$\begin{gathered} \mathrm{n} \\ 006 \mathrm{E} \\ \hline \end{gathered}$	$\begin{gathered} \circ \\ 006 \mathrm{~F} \\ \hline \end{gathered}$
70	$\begin{gathered} \mathrm{p} \\ 0070 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{q} \\ 0071 \\ \hline \end{gathered}$	$\begin{gathered} \text { r } \\ 0072 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 0073 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t} \\ 0074 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{u} \\ 0075 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{V} \\ 0076 \\ \hline \end{array}$	$\begin{gathered} \text { W } \\ 0077 \\ \hline \end{gathered}$	0078	$\begin{gathered} \mathrm{y} \\ 0079 \\ \hline \end{gathered}$	$007 \mathrm{~A}$	$007 \mathrm{~B}$	$\begin{array}{\|c} 1 \\ 007 \mathrm{C} \\ \hline \end{array}$	$\begin{gathered} \} \\ 007 \mathrm{D} \\ \hline \end{gathered}$		$\frac{\text { DEL }}{007 \mathrm{~F}}$
80	0402	0403	$\begin{array}{\|c} \prime \\ \hline 201 A \\ \hline \end{array}$	0453	$\begin{gathered} 701 \mathrm{E} \\ 20 \end{gathered}$	2026	$\begin{array}{\|c} \dagger \\ 2020 \\ \hline \end{array}$	$\begin{gathered} \neq \\ 2021 \\ \hline \end{gathered}$	$\underset{20 \mathrm{AC}}{\mathrm{E}}$	$\begin{array}{\|c} 86 \\ 2030 \\ \hline \end{array}$	$\begin{gathered} \mathrm{Jb} \\ 0409 \\ \hline \end{gathered}$	2039	$\begin{gathered} \text { Њ } \\ 040 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline K \\ \hline 040 \mathrm{C} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Th} \\ 040 \mathrm{~B} \\ \hline \end{gathered}$	$\underset{040 \mathrm{~F}}{\amalg}$
90	$\begin{gathered} \hbar \\ 0452 \end{gathered}$	2018	2019	2015	2010	2022	2013	2014		2122	$\begin{gathered} \text { Jb } \\ 0459 \\ \hline \end{gathered}$	$203 \mathrm{~A}$	045A	$\begin{gathered} \text { K } \\ 045 \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \hbar \\ \hline 045 \mathrm{~B} \end{gathered}$	$\begin{gathered} \Psi \\ 045 \mathrm{~F} \\ \hline \end{gathered}$
A0	$\frac{\mathrm{NBSP}}{00 \mathrm{~A} 0}$	$\begin{gathered} y_{y} \\ 040 \mathrm{E} \end{gathered}$	$\underset{045 \mathrm{y}}{\stackrel{\mathrm{y}}{2}}$	$\underset{0408}{\mathrm{~J}}$	$00 \mathrm{~A} .4$	$\begin{gathered} I \\ 0490 \end{gathered}$	$00 \mathrm{~A} .6$	$\begin{array}{\|c\|} \hline \mathrm{S} \\ 00 \mathrm{~A} 7 \\ \hline \end{array}$	$\begin{gathered} \text { Ë } \\ 0401 \\ \hline \end{gathered}$	$\begin{gathered} \text { (C) } \\ \text { 00. } 9 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{E} \\ 0404 \\ \hline \end{array}$	$\begin{gathered} \ll \\ 00 \mathrm{AB} \\ \hline \end{gathered}$	$\begin{array}{r} \neg \\ 00 \mathrm{~A} \cdot \\ \hline \end{array}$	$00 \mathrm{AD}$	$\begin{gathered} \text { (B) } \\ 00 \mathrm{~A}, \mathrm{E} \\ \hline \end{gathered}$	$\begin{gathered} \ddot{\mathrm{I}} \\ 0407 \\ \hline \end{gathered}$
B0	$00 \mathrm{~B} 0$	$\begin{gathered} \pm \\ 00 \mathrm{~B} 1 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { I } \\ 0406 \\ \hline \end{array}$	0456	$\begin{gathered} I \\ 0491 \end{gathered}$	$\begin{gathered} \mu \\ \text { 00B5 } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { It } \\ \text { 00B6 } 6 \\ \hline \end{array}$	$00 \mathrm{~B} 7$	$\begin{gathered} \ddot{e} \\ 0451 \end{gathered}$	$\begin{gathered} \text { No } \\ 2116 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{e} \\ 0454 \\ \hline \end{gathered}$	$00 \mathrm{BB}$	$\underset{0458}{j}$	$\begin{array}{\|c\|} \hline \mathrm{S} \\ 0405 \\ \hline \end{array}$	$\begin{gathered} S \\ 0455 \end{gathered}$	$\begin{gathered} \ddot{1} \\ 0457 \\ \hline \end{gathered}$
C0	$\begin{gathered} A \\ 0410 \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ 0411 \end{gathered}$	$\begin{gathered} \text { B } \\ 0412 \end{gathered}$	0413	$\underset{0414}{\text { Д }}$	$\begin{gathered} \mathrm{E} \\ 0415 \end{gathered}$	$\begin{gathered} \Re \\ 0416 \end{gathered}$	$\begin{gathered} 3 \\ 0417 \end{gathered}$	$\begin{gathered} \text { И } \\ 0418 \end{gathered}$	$\begin{gathered} \hline \text { Й } \\ 0419 \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{K} \\ 041 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} \pi \\ 041 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} \\ 041 \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ 041 \mathrm{D} \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 041 \mathrm{E} \end{gathered}$	$\begin{gathered} \Pi \\ 041 \mathrm{~F} \end{gathered}$
D0	0420	$\begin{gathered} \mathrm{C} \\ 0421 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} \\ 0422 \\ \hline \end{gathered}$	0423	0424	$\begin{gathered} \mathrm{X} \\ 0425 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { L } \\ \hline 0426 \\ \hline \end{array}$	$\begin{gathered} \mathrm{Y} \\ 0427 \\ \hline \end{gathered}$	$\begin{gathered} \Psi 1 \amalg \\ 0428 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Щ } \\ 0429 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \mathrm{b} \\ 042 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} \mathrm{HI} \\ 042 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{b} \\ 042 \mathrm{C} \\ \hline \end{gathered}$	$\stackrel{9}{9}$	$\begin{array}{\|c\|} \hline 10 \\ 042 \mathrm{E} \\ \hline \end{array}$	$\begin{gathered} \text { G } \\ 042 \mathrm{~F} \\ \hline \end{gathered}$
E0	$\begin{gathered} a \\ 0430 \\ \hline \end{gathered}$	$\begin{gathered} \text { б } \\ 0431 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ 0432 \\ \hline \end{gathered}$	$\begin{gathered} \Gamma \\ 0433 \\ \hline \end{gathered}$	$\begin{gathered} \text { Д } \\ 0434 \\ \hline \end{gathered}$	$\begin{gathered} e \\ 0435 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { W } \\ 0436 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 0437 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { И } \\ 0438 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Й } \\ 0439 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline K \\ 043 A \\ \hline \end{array}$	$\begin{gathered} \mathrm{J} \\ 043 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} \\ 043 \mathrm{C} \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{H} \\ 043 \mathrm{D} \\ \hline \end{array}$	$\begin{gathered} \circ \\ 043 \mathrm{E} \\ \hline \end{gathered}$	$\begin{gathered} \pi \\ 043 \mathrm{~F} \\ \hline \end{gathered}$
F0	$\underset{0440}{\mathrm{p}}$	$\begin{gathered} C \\ 0441 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} \\ 0442 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{y} \\ 0443 \\ \hline \end{gathered}$	$\begin{gathered} \Phi \\ 0444 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{X} \\ 0445 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { ц } \\ 0446 \\ \hline \end{array}$	$\begin{gathered} \text { LI } \\ 0447 \\ \hline \end{gathered}$	$\begin{gathered} \text { ய1I } \\ 0448 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { щ } \\ 0449 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \mathrm{B} \\ 044 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} \mathrm{BI} \\ 044 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{b} \\ 044 \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ 044 \mathrm{D} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{F} \\ 04 \mathrm{E} \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ 044 \mathrm{~F} \\ \hline \end{gathered}$

	00	01	02	03	04	05	06	07	08	09	OA	0B	OC	OD	OE	OF
00	$\frac{\mathrm{NUL}}{0000}$	$\frac{\mathrm{STX}}{0001}$	$\frac{\mathrm{SOT}}{0002}$	$\frac{\text { ETX }}{0003}$	$\frac{\mathrm{EOT}}{0004}$	$\frac{\text { ENO }}{0005}$	$\frac{\mathrm{ACK}}{0006}$	$\frac{\text { BEL }}{0007}$	$\frac{\text { BS }}{0008}$	$\frac{\mathrm{HT}}{0009}$	$\begin{array}{\|c} \underline{\mathrm{LF}} \\ 000 \mathrm{~A} \end{array}$	$\frac{\mathrm{VT}}{000 \mathrm{~B}}$	$\frac{\mathrm{FF}}{000 \mathrm{C}}$	$\frac{\mathrm{CR}}{000 \mathrm{D}}$	$\frac{50}{000 \mathrm{E}}$	$\frac{\mathrm{SI}}{000 \mathrm{~F}}$
10	$\frac{\text { DLE }}{0010}$	$\frac{\mathrm{DCl}}{0011}$	$\frac{\mathrm{DC} 2}{0012}$	$\frac{\mathrm{DC} 3}{0013}$	$\frac{\mathrm{DC4}}{0014}$	$\frac{\text { NAK }}{0015}$	$\frac{\text { SYN }}{0016}$	$\frac{\text { ETB }}{0017}$	$\frac{\mathrm{CAN}}{0018}$	$\frac{\mathrm{EM}}{0019}$	$\frac{\text { SUB }}{001 \mathrm{~A}}$	$\frac{\text { ESC }}{001 B}$	$\frac{F S}{001 C}$	$\frac{G S}{0010}$	$\frac{\mathrm{RS}}{001 \mathrm{E}}$	$\frac{\mathrm{WS}}{001 \mathrm{~F}}$
20	$\frac{\mathrm{SP}}{0020}$	$\begin{gathered} ! \\ 0021 \\ \hline \end{gathered}$	0022	$\begin{gathered} \hline \# \\ 0023 \end{gathered}$	$\begin{gathered} \$ \\ 0024 \end{gathered}$	$\begin{gathered} \% \\ 0025 \end{gathered}$	$$	0027	$\begin{gathered} (\\ 0028 \\ \hline \end{gathered}$	$\stackrel{\stackrel{y}{2}}{0029}$	$002 \mathrm{~A}$	$\begin{gathered} + \\ 002 \mathrm{~B} \end{gathered}$	$\begin{gathered} \prime \\ 002 \mathrm{C} \end{gathered}$	$002 \mathrm{D}$	$\stackrel{.}{002 \mathrm{E}}$	$/$
30	$\begin{gathered} 0 \\ 0030 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 0031 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2 \\ 0032 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 0033 \end{gathered}$	$\begin{gathered} 4 \\ 0034 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 0035 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 0036 \end{gathered}$	$\begin{gathered} 7 \\ 0037 \\ \hline \end{gathered}$	$\begin{array}{\|c} 8 \\ 0038 \\ \hline \end{array}$	$\begin{array}{\|c} 9 \\ 0039 \\ \hline \end{array}$	$003 \mathrm{~A}$	$\begin{gathered} ; \\ 003 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} < \\ 003 \mathrm{C} \\ \hline \end{gathered}$	$003 \mathrm{D}$	$\begin{gathered} > \\ 003 \mathrm{E} \end{gathered}$	$\begin{gathered} ? \\ 003 \mathrm{~F} \\ \hline \end{gathered}$
40	$\begin{gathered} \text { (1) } \\ 0040 \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ 0041 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline B \\ 0042 \\ \hline \end{array}$	$\begin{gathered} \mathrm{C} \\ 0043 \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ 0044 \end{gathered}$	$\begin{gathered} \mathrm{E} \\ 0045 \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{F} \\ 0046 \\ \hline \end{array}$	$\begin{gathered} G \\ 0047 \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{H} \\ 0048 \\ \hline \end{array}$	$\begin{array}{\|c} I \\ 0049 \\ \hline \end{array}$	$\begin{gathered} \mathrm{J} \\ 004 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K} \\ 004 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{L} \\ 004 \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} \\ 004 \mathrm{D} \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{N} \\ 004 \mathrm{E} \\ \hline \end{array}$	$\begin{gathered} \mathrm{O} \\ 004 \mathrm{~F} \\ \hline \end{gathered}$
50	$\begin{gathered} \mathrm{P} \\ 0050 \end{gathered}$	$\underset{0051}{\mathrm{Q}}$	$\begin{array}{\|c} \mathrm{R} \\ 0052 \\ \hline \end{array}$	$\begin{gathered} \mathrm{S} \\ 0053 \end{gathered}$	$\begin{gathered} \mathrm{T} \\ 0054 \end{gathered}$	$\begin{gathered} \mathrm{U} \\ 0055 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ 0056 \\ \hline \end{gathered}$	$\begin{gathered} \text { 而 } \\ 0057 \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{X} \\ 0058 \\ \hline \end{array}$	$\begin{array}{\|c} \mathrm{Y} \\ 0059 \\ \hline \end{array}$	$\begin{array}{\|c} \hline Z \\ 005 A \\ \hline \end{array}$	$\begin{gathered} {[} \\ 005 \mathrm{~B} \end{gathered}$	$\underset{005 \mathrm{C}}{ }$	$\begin{gathered}] \\ 0050 \end{gathered}$	$005 \mathrm{E}$	005F
60	0060	$\begin{gathered} a \\ 0061 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{b} \\ 0062 \\ \hline \end{array}$	$\begin{gathered} \mathrm{C} \\ 0063 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{d} \\ 0064 \end{gathered}$	$\begin{gathered} e \\ 0065 \\ \hline \end{gathered}$	$\underset{0066}{\mathrm{f}}$	$\begin{gathered} 9 \\ 0067 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{h} \\ 0068 \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{i} \\ 0069 \\ \hline \end{array}$	$\underset{006 \mathrm{~A}}{j}$	$\begin{array}{\|c\|} \hline k \\ 006 \mathrm{~B} \\ \hline \end{array}$	$\begin{gathered} 1 \\ 006 \mathrm{C} \end{gathered}$	$\mathrm{m}_{006 \mathrm{D}}$	$\begin{array}{\|c} \mathrm{n} \\ 006 \mathrm{E} \\ \hline \end{array}$	$\begin{gathered} \circ \\ 006 \mathrm{~F} \end{gathered}$
70	$\underset{0}{\mathrm{p}}$	$\begin{gathered} \mathrm{q} \\ 0071 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{r} \\ 0072 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 0073 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t} \\ 0074 \\ \hline \end{gathered}$	$\begin{gathered} \text { u } \\ 0075 \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{V} \\ 0076 \\ \hline \end{array}$	$\begin{gathered} \mathrm{w} \\ 0077 \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{X} \\ 0078 \\ \hline \end{array}$	$\begin{array}{\|c} \mathrm{y} \\ 0079 \\ \hline \end{array}$	$\begin{gathered} \mathrm{z} \\ 007 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{array}{\|c} 1 \\ 0 \\ 0078 \\ \hline \end{array}$	$\begin{gathered} 1 \\ 007 \mathrm{C} \end{gathered}$	$\begin{gathered} \} \\ 0070 \end{gathered}$	$007 \mathrm{E}$	$\frac{\mathrm{DEL}}{007 \mathrm{~F}}$
80	$\underset{20 \mathrm{AC}}{€}$		${ }_{2}^{\prime} 01 \mathrm{~A}$	$\underset{0192}{f}$	$\begin{gathered} \prime \prime \prime \\ 201 \mathrm{E} \end{gathered}$	$\begin{gathered} \ldots \\ 2026 \end{gathered}$	$\underset{2020}{\dagger}$	$\begin{gathered} \neq \\ 2021 \end{gathered}$		$\begin{gathered} 8 \\ 2030 \\ \hline \end{gathered}$		$\begin{gathered} \stackrel{<}{2} \\ 2039 \\ \hline \end{gathered}$				
90		2018	2019	2010	2010	2022	2013	2014		2122		$\begin{gathered} > \\ 203 \mathrm{~A} \\ \hline \end{gathered}$				
A0	$\frac{\text { NBSP }}{00 \mathrm{~A} 0}$	0385	$\begin{gathered} \text { 'A } \\ 0386 \end{gathered}$	$00 \mathrm{~A}_{3}$	00. 4	$00 \mathrm{~A} .5$	$\begin{array}{\|c} 1 \\ 00 \mathrm{~A}, 6 \\ \hline \end{array}$	$\begin{gathered} \text { § } \\ 00 \mathrm{~A} 7 \\ \hline \end{gathered}$	0048	$\begin{gathered} \text { (C) } \\ \text { 00. } 9 \\ \hline \end{gathered}$		00AB	$\begin{array}{r} \neg \\ 00 \mathrm{~A} \cdot \\ \hline \end{array}$	00AD	$\begin{gathered} \text { (B) } \\ 00 \mathrm{~A}, \\ \hline \end{gathered}$	2015
B0	$00 \mathrm{~B} 0$	$\begin{gathered} \pm \\ 00 \mathrm{~B} 1 \end{gathered}$	00B2	00B3	0384	$\begin{array}{\|c} \mu \\ \text { 00B5 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { II } \\ \text { 00B6 } \\ \hline \end{array}$	00 B 7	$\begin{gathered} \text { 'E } \\ 0388 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 'H } \\ 0389 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 'I } \\ \hline 038 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} \gg \\ 00 \mathrm{BE} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 038 \mathrm{C} \\ \hline \end{gathered}$	$\begin{array}{\|c} 1 / 2 / 2 \\ 00 \mathrm{BD} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 'Y' } \\ \hline 038 \mathrm{E} \\ \hline \end{array}$	$\begin{gathered} \Omega \\ 038 \mathrm{~F} \\ \hline \end{gathered}$
C0	0390	$\begin{gathered} \text { A } \\ 0391 \\ \hline \end{gathered}$	0392	0393	0394	$\begin{array}{\|c} \hline \mathrm{E} \\ 0395 \\ \hline \end{array}$	$\begin{gathered} Z \\ 0396 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H} \\ 0397 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \Theta \\ 0398 \\ \hline \end{array}$	$\begin{gathered} \mathrm{I} \\ 0399 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{K} \\ 039 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} \Lambda \\ 039 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} \\ 039 \mathrm{C} \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{N} \\ 039 \mathrm{D} \\ \hline \end{array}$	$$	$\begin{gathered} \mathrm{O} \\ 039 \mathrm{~F} \\ \hline \end{gathered}$
D0	$\begin{gathered} \Pi \\ 03 \mathrm{~A}, 0 \\ \hline \end{gathered}$	$\begin{gathered} P \\ 03 A_{1} \\ \hline \end{gathered}$		$\begin{gathered} \Sigma \\ 03 A 3 \\ \hline \end{gathered}$	$\begin{gathered} T \\ 03 \mathrm{~A} .4 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 03 \mathrm{~A} .5 \\ \hline \end{gathered}$	$\begin{array}{\|c} \Phi \\ 03 \mathrm{~A}, 6 \\ \hline \end{array}$	$\begin{array}{\|c} \mathrm{X} \\ 03 \mathrm{~A}_{7} \\ \hline \end{array}$	$\begin{array}{\|c\|} \Psi \\ 03 A 8 \\ \hline \end{array}$	$\begin{array}{\|c} \Omega \\ 03 A 9 \\ \hline \end{array}$	$\begin{gathered} \ddot{I} \\ 03 \mathrm{~A}, \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \ddot{Y} \\ 03 \mathrm{AB}_{\mathrm{B}} \\ \hline \end{gathered}$	$\begin{gathered} \alpha \\ 03 \mathrm{~A} \\ \hline 0 \end{gathered}$	$\begin{gathered} \varepsilon \\ 03 A D \end{gathered}$	$\mathrm{n}_{0 \mathrm{f}}^{\mathrm{g} \cdot \mathrm{E}}$	$\begin{gathered} \text { í } \\ 03 \mathrm{AF} \\ \hline \end{gathered}$
E0	$\begin{gathered} \hline \text { íf } \\ 03 \mathrm{~B} 0 \\ \hline \end{gathered}$	$\begin{gathered} \alpha \\ 03 \mathrm{~B} 1 \\ \hline \end{gathered}$	$\begin{gathered} \beta \\ 03 \mathrm{~B} 2 \end{gathered}$	$\begin{gathered} Y \\ 03 \mathrm{~B} 3 \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ 03 \mathrm{~B} 4 \\ \hline \end{gathered}$	$\begin{gathered} \varepsilon \\ 03 \mathrm{~B} 5 \\ \hline \end{gathered}$	$\begin{gathered} \zeta \\ 03 \mathrm{~B} 6 \\ \hline \end{gathered}$	$\begin{gathered} \eta \\ 03 \mathrm{~B} 7 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \theta \\ 03 \mathrm{~B} 8 \\ \hline \end{array}$	$\begin{array}{\|c} \mathrm{L} \\ 03 \mathrm{~B} 9 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{K} \\ 03 \mathrm{BA} \\ \hline \end{array}$	$\begin{gathered} \lambda \\ 03 \mathrm{BE} \end{gathered}$	$\underset{03 \mathrm{BC}}{\mu}$	$\begin{array}{\|c} v \\ 03 \mathrm{~B} \\ \hline \end{array}$	$\begin{gathered} \xi \\ 03 \mathrm{BE} \end{gathered}$	$\begin{gathered} \circ \\ 03 \mathrm{BF} \\ \hline \end{gathered}$
F0	$\begin{gathered} \text { П } \\ 03 \mathrm{C} 0 \\ \hline \end{gathered}$	$\underset{\sim}{P}$	$\underset{03 \mathrm{C} 2}{\mathrm{~S}}$	$\begin{array}{\|c} \sigma \\ 03 \mathrm{C} 3 \\ \hline \end{array}$	$\begin{gathered} \mathrm{T} \\ 03 C 4 \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{U} \\ 03 \mathrm{C} 5 \\ \hline \end{array}$	$\begin{gathered} \Phi \\ 03 \mathrm{C} 6 \\ \hline \end{gathered}$	$\begin{gathered} X \\ 03 C 7 \\ \hline \end{gathered}$	$\begin{gathered} \Psi \\ 03 C 8 \end{gathered}$	$\begin{gathered} \omega \\ 03 C 9 \\ \hline \end{gathered}$	$\begin{gathered} \text { ̈̈ } \\ 03 C A \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { Ü } \\ 03 C B \\ \hline \end{array}$	$\begin{gathered} 6 \\ 03 \mathrm{CC} \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Ú } \\ 03 \mathrm{CD} \end{array}$	$\begin{gathered} \omega \\ 03 C E \end{gathered}$	

7.3 LIST OF PRINT BLOCKS

LEGEND:

b indicates a space character (ASCII 32 decimal character).
UM unit of measure of the active scale (kg, bg, bt, lb).
UMD unit of measure of the database ($\mathrm{kg}, \mathrm{bg}, \mathrm{bt}, \mathrm{lb}$).

+ T terminator: depending on the setting of the SEtuP >> SEriAL >> tErMin "SET TERMINATOR TYPE" step of the SET-UP environment, a CR or CRLF, LF or no terminator is added.
XXX* These blocks do not work without the alibi memory (optional).
The weight field expands from right to left, with many spaces (ASCII 32 decimal character) for completing the field length.

7.3.1 ORDER BY KIND

CODE

PRINT FORMAT

GENERIC

 XXXXXXXXXXXXXXXXXXXXXXXX + \topHEADING 2 XXXXXXXXXXXXXXXXXXXXXXXX + \uparrow
SCALE UNIT OF MEASURE UM + T
DATABASE UNIT OF MEASURE $U M+T$
INDICATOR DATE IN DD-MM-YY FORMAT DD-MM-YY

GIULIAN CALENDAR DAYS

INDICATOR DATE IN YYMMDD FORMAT
INDICATOR DATE IN MM-DD-YY FORMAT
INDICATOR DATE IN MMDDYY FORMAT
INDICATOR DATE IN YYMM FORMAT
XXXXXXXXXXXXXXXXXXXXXXXX + T
HEADING 1
in which $\operatorname{XXXXXXXXXXXXXXXX~are~the~} 24$ characters of the first line of the heading; just the entered characters are printed, from left to right.
ACTIVE SCALE NUMBER SCALEbNUMBERbX + T
CR, CRLF, LF or NO TERMINATOR bHH:MMbDD-MM-YY + T XXXXXXXXXX XXXXXXXXXX DD/MM/YY + T HH:MM + T DD/MM/YYbHH:MM + T
FOLLOWING MACRO TERMINATOR SKIPS
PRINTS ON PC PORT
PRINTS ON PRINTER PORT
FORCES PRINTOUT
in which X is the active scale number (0..4)
JUST ACTIVE SCALE NUMBER
in which X is the active scale number (0..4)

HEADING 3

CURRENT YEAR IN X FORMAT (for example $2001=1,2002=2$, etc...)
CURRENT YEAR IN LITERAL FORMAT
(for example 1999 = D, $2000=$ E etc...)
468 INDICATOR TIME ON TWO DIGITS
477 MAIN CURRENCY SYMBOL
478 SECONDARY CURRENCY SYMBOL
" + " in case of addition, """ in case of subtraction, " x " in case of multiplication.
The blocks 480, 481, 525 and 526 refer to the operation made with the "calculator" function described in the section 15.1, USER MAN.REF.

506 EAN/UCC CHECKDIGIT ON THE 5 FOLLOWING C DIGITS

Notes:

- The checkdigit is calculated if " C " is set in the compilation of the article, or fixed if a value is set between 0 and 9.
- One must provide for a space before the five digits for the entry of the checkdigit, and enter the macro AFTER the digits to be checked.
For example:
input string >> *b12345*
output string >> *C12345*
507 EAN/UCC CHECKDIGIT ON THE 12 PREVIOUS DIGITS

Notes:

- The checkdigit is always calculated.
- One must enter the macro AFTER the digits to be checked.

For example:
input string >> *123456789012*
output string >> *123456789012C*
516 ONLY CURRENT DATE YEAR
517 ONLY CURRENT MONTH DATE
518 EAN/UCC CHECKDIGIT ON THE 13 PREVIOUS DIGITS

Notes:

- The checkdigit is always calculated.
- One must enter the macro AFTER the digits to be checked.

For example:
input string >> *1234567890123*
output string >> *1234567890123C*
524 JUST MINUTES VALUE MM

WEIGHT		
301	NET WEIGHT	NET=bXXXXXXXXXXUM + T
	in which XXXXXXXXXX is the weight value on 10 digits including the comma.	
302	GROSS WEIGHT	GROSS $=$ XXXXXXXXXXUM + T
303	TARE WEIGHT	TAREb=XXXXXXXXXXUM + T
304	TOTALISATION NET	N.YYYbNETbbbXXXXXXXXbUM + T
	in which $Y Y Y$ indicates the weighs number, XXXXXXX is the weight value in 8 digits including the comma; the weigh number is reset upon the resetting of the partial total.	
305	TOTALISATION GROSS N.	N.YYYbGROSSbXXXXXXXXbUM + T
306	TOTALISATION TARE	N.YYYbTAREbbXXXXXXXXbUM + T
348	NET OR AMOUNT ON 5 DIGITS WITH CHECKDIGIT	CXXXXX
429	LAST NET TOTALISED	XXXXXXXXXX
	in which XXXXXXXXXX indicates the weight value in 10 digits including the co	comma.
430	LAST TOTALISED GROSS	XXXXXXXXXX
431	LAST TOTALISED TARE	XXXXXXXXXX
432	NET / AMOUNT ON 5 DIGITS	XXXXX
436	ONLY NET IN POUNDS	XXXXXXXXXX
437	ONLY TARE IN POUNDS	XXXXXXXXXX
438	ONLY GROSS IN POUNDS	XXXXXXXXXXX
440	ONLY NET IN POUNDS ON 5 DIGITS, ROUNDED	
	TO 2 DECIMALS	XXXXX

454 ONLY NET IN POUNDS ON 6 DIGITS, ROUNDED TO 2 DECIMALS

PARTIAL TOTAL

307 NET PARTIAL TARE
N.YYYbT1.N.XXXXXXXXbUM in which YYY indicates the weighs number, XXXXXXXX the weight value in 8 digits including the comma.
310 GROSS PARTIAL TOTAL N.YYYbT1.G.bXXXXXXXXbUM + \dagger in which YYY indicates the weighs number, XXXXXXXXXX the weight value on 8 digits including the comma.
410 JUST NET PARTIAL TOTAL XXXXXXXXXX
JUST GROSS PARTIAL TOTAL XXXXXXXXXX
JUST PARTIAL TOTAL TARE XXXXXXXXXX
NET PARTIAL TOTAL / AMOUNT ON 5 DIGITS XXXXX
434 NET PARTIAL TOTAL / AMOUNT ON 6 DIGITS XXXXXX
435 NET PARTIAL TOTAL / AMOUNT ON 5 DIGITS WITH CHECKDIGIT CXXXXX
483 NET PARTIAL TOTAL IN POUNDS XXXXXXXXXX

GENERAL TOTAL

308 NET GENERAL TOTAL N.YYYbT2.N.bXXXXXXXXbUM + T
311 GROSS GENERAL TOTAL
413 JUST GENERAL NET TOTAL
414 JUST GENERAL GROSS TOTAL
N.YYYbT2.G.bXXXXXXXXbUM + T

XXXXXXXXXX
419 JUST GENERAL TOTAL TARE XXXXXXXXXXX

484 NET GENERAL TOTAL IN POUNDS
XXXXXXXXXX

GRAND TOTAL
309 NET GRAND TOTAL
N.YYYbT3.N.bXXXXXXXXXbUM + T

312 GROSS GRAND TOTAL
416 JUST NET GRAND TOTAL
N.YYYbT3.G.bXXXXXXXXbUM + T

417 JUST GROSS GRAND TOTAL XXXXXXXXXX

420 JUST GRAND TOTAL TARE XXXXXXXXXX

485 NET GRAND TOTAL IN POUNDS

JUST WEIGHS PARTIAL TOTAL
XXXXXXXX the field expands from right to left, with many spaces for completing the field length.
412 JUST GENERAL TOTAL WEIGHS
415 JUST WEIGHS GRAND TOTAL XXXXXXXX
447 TOTALISATION PROGRESSIVE XX...XX

It is set through function 800, combinable with the desired key (<< F.KEYS >> step) The field expands from right to left, with many spaces for completing the field length.
448 CUSTOMER PROGRESSIVE
XX...XX

It is set through function 801, combinable with the desired key (<< F.KEYS >> step)

450 PARTIAL TOTAL RESETTINGS PROGRESSIVE
XX...XX

It is set through function 804, combinable with the desired key (<< F.KEYS >> step)
451 GENERAL TOTAL RESETTINGS PROGRESSIVE
XX...XX

It is set through function 805, combinable with the desired key (<< F.KEYS >> step)
452 GRAND TOTAL RESETTINGS PROGRESSIVE
It is set through function 806, combinable with the desired key (<< F.KEYS >> step)
453 PRODUCT TOTAL RESETTINGS PROGRESSIVE
It is set through function 807, combinable with the desired key (<< F.KEYS >> step)
PALLET PROGRESSIVE
XX...XX

It is set through function 803, combinable with the desired key (<< F.KEYS >> step)

JUST TEXTS

334	JUST "TARE" TEXT	TARE
335	JUST "PRICE" TEXT	PRICE
336	ONLY "DD SEASONING" TEXT	DDbSEASONING
337	ONLY "DD EXPIRY" TEXT	DDbEXPIRY
338	JUST "NET TOTAL" TEXT	NETbTOTAL
339	JUST "TARE TOTAL" TEXT	TAREbTOTAL
340	"WEIGHS TOTAL" TEXT	WEIGHSbTOTAL
341	"GROSS TOTAL" TEXT	GROSSbTOTAL
527	ONLY "ARTICLE TOTAL" TEXT	ARTICLEbTOTAL
528	ONLY "PARTIAL TOTAL" TEXT	PARTIALbTOTAL
529	ONLY "GENERAL TOTAL" TEXT	GENERALbTOTAL
530	ONLY "GRAND TOTAL" TEXT	GRANDbTOTAL
531	ONLY "AMOUNT" TEXT	AMOUNT
533	ONLY "NET" TEXT	NETb
534	ONLY "GROSS" TEXT	GROSSb
535	ONLY "TARE" TEXT	TAREb
536	ONLY "WEIGH" TEXT	WEIGH
537	ONLY "WEIGHS" TEXT	WEIGHS
508	JUST CONDITIONED TARE TEXT	XXXXXX
	XXXXXX becomes TARE in case of semiautomatic tare or PTbbbb in case of manual tare.	
509	JUST CONDITIONED PT TEXT	XXX
	XX becomes bb in case of semiautomatic tare or PT in case of manual tare.	

ADDITIONAL VALUE				
313	PARTIAL TOTAL ADDITIONAL VALUE	T1bADD.bXXXXXXXXXX + T		

314 GENERAL TOTAL ADDITIONAL VALUE T2bADD.bXXXXXXXXXX + T in which the XXXXXXXXXX is the additional value, linked to the general total, on 10 digits; it will be zeroed with the clearing of the general total.
315 GRAND TOTAL ADDITIONAL VALUE T3bADD.bXXXXXXXXXX + T in which the $\operatorname{XXXXXXXXXX~is~the~additional~value,~linked~to~the~grand~total,~on~} 10$ digits; it will be zeroed with the clearing of the grand total.
442 ENTERED ADDITIONAL VALUE
XXXXX
ONLY ADDITIONAL PARTIAL TOTAL VALUE
XXXXXXXXXXX
in which XXXXXXXXXX is the additional value, linked to the partial total, on 10 digits; it is reset upon the zeroing of the partial total. The field is completed with spaces on the left.
444 ONLY ADDITIONAL GENERAL TOTAL VALUE
XXXXXXXXXXX
in which XXXXXXXXXX is the additional totalised value, linked to the general total, on 10 digits; it is reset upon the zeroing of the general total. The field is completed with spaces on the left.
445 ONLY ADDITIONAL GRAND TOTAL VALUE
XXXXXXXXXX
in which XXXXXXXXXX is the additional totalised value, linked to the grandl total, on 10 digits; it is reset upon the zeroing of the general total. The field is completed with spaces on the left.
446 ONLY ADDITIONAL ARTICLE TOTAL VALUE
XXXXXXXXXX
in which XXXXXXXXXX is the additional totalised value, linked to the article total, on 10 digits; it is reset upon the
zeroing of the general total. The field is completed with spaces on the left.

PRODUCT		
316	ARTICLE NET TOTAL	N.YYYbTA.N.bXXXXXXXXbUM + T
317	ARTICLE GROSS TOTAL	N.YYYbTA.L.bXXXXXXXXbUM + T
332	ACTIVE ARTICLE MEMORY NUMBER the field is expressed with three digits,	th.
333	JUST 1st ARTICLE DESCRIPTION in which XXXXXXXXXXXXXXXXXXXXX characters are printed, which expand fro	XXXXXXXXXXXXXXXXXXXXXXXXX ption characters; just the entered

ONLY ARTICLE SEASONING DAYS

XXXX
ONLY ARTICLE EXPIRY DAYSJUST ARTICLE NET TOTALXXXXXXXXXX
JUST ARTICLE TARE TOTAL XXXXXXXXXX
JUST ARTICLE WEIGHS TOTAL XXXXX
The field expands from right to left, with many spaces for completing the field length.JUST ARTICLE GROSS TOTAL
XXXXXXXXXX
ONLY ARTICLE NET TOTAL IN POUNDS
CXXXXX
WITH CHECKDIGIT

DD-MM-YY

DD-MM-YY
DD-MM-YY
DD-MM-YY YYMMDD YYMMDD YYMMDD YYMMDD
ACTIVE ARTICLE SEASONING DATE IN DD-MM-YY FORMAT
ACTIVE ARTICLE SEASONING DATE IN DD-MM-YY FORMAT DD
ACTIVE ARTICLE SEASONING DATE IN YYMMDD FORMAT
ACTIVE ARTICLE SEASONING DATE IN YYMMDD FORMATMM
ONLY ACTIVE ARTICLE EXPIRY MONTH MM
ONLY ACTIVE ARTICLE EXPIRY YEAR YY
JUST 1st ARTICLE DESCRIPTION
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
in which XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX are the 30 description characters; just the entered
characters are printed, which expand from left to right.
JUST 2nd ARTICLE DESCRIPTION XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JUST 3rd ARTICLE DESCRIPTION XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JUST 4th ARTICLE DESCRIPTION XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

INPUT TEXTS

JUST INPUT 0 TEXT HEADING
XXXXXXXXXXXXXXXXX
in which $\operatorname{XXXXXXXXXXXXXXX~are~} 16$ characters of the input 0 text heading; just the entered characters are printed, from left to right.
JUST INPUT 1 TEXT HEADING
JUST INPUT 2 TEXT HEADING
JUST INPUT 3 TEXT HEADING
JUST INPUT 4 TEXT HEADING
JUST INPUT 5 TEXT HEADING
JUST INPUT 6 TEXT HEADING
JUST INPUT 7TEXT HEADING
JUST INPUT 8 TEXT HEADING
JUST INPUT 9 TEXT HEADING
JUST INPUT 10 TEXT HEADING
JUST INPUT 11 TEXT HEADING
JUST INPUT 12 TEXT HEADING
JUST INPUT 13 TEXT HEADING
JUST INPUT 14 TEXT HEADING
JUST THE INPUT 0 TEXT CONTENTS
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
in which YYYYYYYYYYYYYYYYY are 32 characters of the input 0 text contents; just the entered characters are printed, from left to right.
JUST THE INPUT 1 TEXT CONTENTS YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
JUST THE INPUT 2 TEXT CONTENTS YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY JUST THE INPUT 3 TEXT CONTENTS YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY JUST THE INPUT 4 TEXT CONTENTS JUST THE INPUT 5 TEXT CONTENTS YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Indicatori serie 3590EKR, 3590EXP, 3590EXT, CPWE, CPWET

Abstract

E-AF05 02.03 12.08 EN T YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

 JUST THE INPUT 14 TEXT CONTENTS XXXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T in which XXXXXXXXXXXXXXXX are 16 characters of the heading and YYYYYYYYYYYYYYYYY are 32 characters of the input 0 text contents, just the entered characters are printed, from left to right.XXXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T XXXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T
INPUT 1 TEXT
INPUT 2 TEXT
INPUT 3 TEXT
INPUT 4 TEXT
INPUT 5 TEXT
INPUT 6 TEXT
INPUT 7 TEXT
INPUT 8 TEXT
INPUT 9 TEXT
INPUT 10 TEXT
INPUT 11 TEXT
INPUT 12 TEXT
INPUT 13 TEXT
INPUT 14 TEXT

ALIBI MEMORY

LAST GROSS WEIGHT ON ALIBI MEMORY
in which XXXXXX indicates the weigh number on 6 digits, including the comma; the field expands from right to left.
this block prints the unit of measure of the weigh saved in the alibi memory.
The field expands from right to left and the non significant zeros are not printed.

PRICE AMOUNT

344 ONLY PRICE VALUE IN MAIN CURRENCY
XXXXXXXXXX
10 digits excluding a possible decimal point, independently of whether the functioning is by price or weight
SCALE UNIT OF MEASURE
XXXXXXXXXX
10 digits excluding a possible decimal point, independently of whether the functioning is by price or weight.
10 digits excluding a possible decimal point, independently of whether the functioning is by price or weight
ACTIVE SCALE UNIT OF MEASURE XXXXXXXXX
10 digits excluding a possible decimal point, independently of whether the functioning is by price or weight.
ONLY AMOUNT VALUE IN MAIN CURRENCY XXXXXXXXXX
10 digits including a possible decimal point; the amount is printed independently of whether the functioning is by
price or weight.
10 digits including a possible decimal point; the amount is printed independently of whether the functioning is by price or weight.

Indicatori serie 3590EKR, 3590EXP, 3590EXT, CPWE, CPWET
469 PARTIAL TOTAL AMOUNT IN MAIN CURRENCY
470 GENERAL TOTAL AMOUNT IN MAIN CURRENCY
471 GRAND TOTAL AMOUNT IN MAIN CURRENCY
472 ARTICLE TOTAL AMOUNT IN MAIN CURRENCY
473 PARTIAL TOTAL AMOUNT IN SECONDARY CURRENCY
474 GENERAL TOTAL AMOUNT IN SECONDARY CURRENCY
475 GRAND TOTAL AMOUNT IN SECONDARY CURRENCY
476 ARTICLE TOTAL AMOUNT IN SECONDARY CURRENCY

CUSTOMER

355 ACTIVE CUSTOMER STORAGE NUMBER
the field is expressed in three digits, with some zeros to complete the length of the field.
$356 \quad 1^{\text {ST }}$ DESCRIPTION OF ACTIVE CUSTOMER
357 2ND DESCRIPTION OF ACTIVE CUSTOMER
358 3RD DESCRIPTION OF ACTIVE CUSTOMER
359
360
$4^{\text {TH }}$ DESCRIPTION OF ACTIVE CUSTOMER
$5^{\text {TH }}$ DESCRIPTION OF ACTIVE CUSTOMER

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXX +

INGREDIENTS		
486	$1{ }^{\circ}$ LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
487	2° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
488	3° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
489	4° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
490	5° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
491	6° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
492	$7{ }^{\circ}$ LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
493	8° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
494	9° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
495	10° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
496	11° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
497	12° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
498	13° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
499	14° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
500	15° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
501	16° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
502	17° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
503	18° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T
504	19° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX +
505	20° LINKED INGREDIENT DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX +

Note:

Through the macro 650 is possible to print the ingredient description with numeric index passed as parameter.

7.3.2 NUMERICAL ORDER

CODE

PRINT FORMAT

PRINT END
301 NET WEIGHT in which XXXXXXXXXX is the weight value on 10 digits including the comma.
GROSS WEIGHT
NET=bXXXXXXXXXXUM $+T$
GROSS=XXXXXXXXXXUM + T
TOTALISATION NET
TAREb=XXXXXXXXXXUM $+T$ in which YYY indicates the weighs number, XXXXXXX is the weight value in 8 digits including the comma; the weigh number is reset upon the resetting of the partial total.
TOTALISATION GROSS
N.YYYbGROSSbXXXXXXXXbUM + T

TOTALISATION TARE
N.YYYbTAREbbXXXXXXXXbUM + T

NET PARTIAL TARE
N.YYYbT1.N.XXXXXXXXbUM
in which YYY indicates the weighs number, XXXXXXXX the weight value in 8 digits including the comma.

344 ONLY PRICE VALUE IN MAIN CURRENCY
10 digits excluding a possible decimal point, independently of whether the functioning is by price or weight

Indicatori serie 3590EKR, 3590EXP, 3590EXT, CPWE, CPWET

NET GENERAL TOTAL
NET GRAND TOTAL
GROSS PARTIAL TOTAL

E-AF05_02.03_12.08_EN_T
N.YYYbT2.N.bXXXXXXXXbUM + T N.YYYbT3.N.bXXXXXXXXXbUM + T N.YYYbT1.G.bXXXXXXXXXbUM + T in which YYY indicates the weighs number, XXXXXXXXXX the weight value on 8 digits including the comma.
GROSS GENERAL TOTAL
N.YYYbT2.G.bXXXXXXXXbUM + T
N.YYYbT3.G.bXXXXXXXXbUM + T

T1bADD.bXXXXXXXXXX + T

GENERAL TOTAL ADDITIONAL VALUE in which the XXXXXXXXXX is the additional value, linked to the general total, on 10 digits; it will be zeroed with the clearing of the general total.
GRAND TOTAL ADDITIONAL VALUE T3bADD.bXXXXXXXXXX + T in which the $\operatorname{XXXXXXXXXX~is~the~additional~value,~linked~to~the~grand~total,~on~} 10$ digits; it will be zeroed with the clearing of the grand total.
ARTICLE NET TOTAL N.YYYbTA.N.bXXXXXXXXbUM + T
ARTICLE GROSS TOTAL N.YYYbTA.G.bXXXXXXXXbUM + T
DOTTED LINE
PRINTS 3 CRLF
DATE / TIME FOR DP24/DP190
MAXIMUM TOTALISATION THRESHOLD VALUE
MINIMUM TOTALISATION THRESHOLD VALUE XXXXXXXXXX
DATE
DATE TIME
FOLLOWING MACRO TERMINATOR SKIPS
PRINTS ON PC PORT
PRINTS ON PRINTER PORT
FORCES PRINTOUT
ACTIVE SCALE NUMBER
in which X is the active scale number (0..4)
JUST ACTIVE SCALE NUMBER
in which X is the active scale number ($0 . .4$)
ACTIVE ARTICLE MEMORY NUMBER
the field is expressed with three digits, with the zeros to complete the field length.
JUST 1st ARTICLE DESCRIPTION XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX in which XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX are the 30 description characters; just the entered characters are printed, which expand from left to right.
JUST "TARE" TEXT
JUST "PRICE" TEXT
ONLY "DD SEASONING" TEXT DDbSEASONING
ONLY "DD EXPIRY" TEXT
JUST "NET TOTAL" TEXT
JUST "TARE TOTAL" TEXT
"WEIGHS TOTAL" TEXT
"GROSS TOTAL" TEXT
ONLY EAN ARTICLE CODE VALUE
If less than six digits are entered, some spaces on the right are entered to complete the field.
ONLY ARTICLE CHECKDIGIT VALUE
The value is printed if different from " C ".

10 digits excluding a possible decimal point, independently of whether the functioning is by price or weight
ONLY AMOUNT VALUE IN MAIN CURRENCY

T2bADD.bXXXXXXXXXX + T
bHH:MMbDD-MM-YY + T
XXXXXXXXXX
DD/MM/YY + T
HH:MM + T
DD/MM/YYbHH:MM + T

SCALEbNUMBERbX + T
X
XXX

TARE
PRICE DDbEXPIRY NETbTOTAL

XXXXXXXXXXX
10 digits including a possible decimal point; the amount is printed independently of whether the functioning is by price or weight.

10 digits including a possible decimal point; the amount is printed independently of whether the functioning is by price or weight.

NET OR AMOUTN ON 5 DIGITS WITH CHECKDIGIT
CXXXXX
ONLY ARTICLE SEASONING DAYS
XXXX
ONLY ARTICLE EXPIRY DAYS XXXX
JUST ARTICLE NET TOTAL XXXXXXXXXX
JUST ARTICLE TARE TOTAL XXXXXXXXXX
JUST ARTICLE WEIGHS TOTAL XXXXX
The field expands from right to left, with many spaces for completing the field length.
JUST ARTICLE GROSS TOTAL
XXXXXXXXXXX
ACTIVE CUSTOMER STORAGE NUMBER XXX the field is expressed in three digits, with some zeros to complete the length of the field.
${ }^{\text {ST }}$ DESCRIPTION OF ACTIVE CUSTOMER
$2^{\text {ND }}$ DESCRIPTION OF ACTIVE CUSTOMER
3 2RD DESCRIPTION OF ACTIVE CUSTOMER
$4^{\text {TH }}$ DESCRIPTION OF ACTIVE CUSTOMER
$5^{\text {TH }}$ DESCRIPTION OF ACTIVE CUSTOMER
JUST INPUT 0 TEXT HEADING in which XXXXXXXXXXXXXXXX are 16 characters of the input 0 text heading; just the entered characters are printed, from left to right.
JUST INPUT 1 TEXT HEADING
XXXXXXXXXXXXXXXXX
JUST INPUT 2 TEXT HEADING
JUST INPUT 3 TEXT HEADING
JUST INPUT 4 TEXT HEADING
JUST INPUT 5 TEXT HEADING
JUST INPUT 6 TEXT HEADING
JUST INPUT 7TEXT HEADING
JUST INPUT 8 TEXT HEADING
JUST INPUT 9 TEXT HEADING
JUST INPUT 10 TEXT HEADING
JUST INPUT 11 TEXT HEADING
JUST INPUT 12 TEXT HEADING
JUST INPUT 13 TEXT HEADING
JUST INPUT 14 TEXT HEADING
JUST THE INPUT 0 TEXT CONTENTS XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXX in which YYYYYYYYYYYYYYYY are 32 characters of the input 0 text contents; just the entered characters are printed, from left to right.
JUST THE INPUT 1 TEXT CONTENTS
JUST THE INPUT 2 TEXT CONTENTS
JUST THE INPUT 3 TEXT CONTENTS
JUST THE INPUT 4 TEXT CONTENTS
JUST THE INPUT 5 TEXT CONTENTS
JUST THE INPUT 6 TEXT CONTENTS
JUST THE INPUT 7 TEXT CONTENTS
JUST THE INPUT 8 TEXT CONTENTS
JUST THE INPUT 9 TEXT CONTENTS
JUST THE INPUT 10 TEXT CONTENTS
JUST THE INPUT 11 TEXT CONTENTS
JUST THE INPUT 12 TEXT CONTENTS
JUST THE INPUT 13 TEXT CONTENTS
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY JUST THE INPUT 14 TEXT CONTENTS YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY INPUT 0 TEXT XXXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T in which XXXXXXXXXXXXXXXX are 16 characters of the heading and YYYYYYYYYYYYYYYYY are 32 characters of the input 0 text contents, just the entered characters are printed, from left to right.
INPUT 1 TEXT XXXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T INPUT 2 TEXT XXXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T

INPUT 3 TEXT
INPUT 4 TEXT
INPUT 5 TEXT
INPUT 6 TEXT
INPUT 7 TEXT
INPUT 8 TEXT
INPUT 9 TEXT
INPUT 10 TEXT
INPUT 11 TEXT
INPUT 12 TEXT
INPUT 13 TEXT
INPUT 14 TEXT
HEADING 1

XXXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T XXXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T XXXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T XXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T XXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T XXXXXXXXXXXXXXXXbYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY + T XXXXXXXXXXXXXXXXXXXXXXXX + \dagger
in which $X X X X X X X X X X X X X X X X$ are the 24 characters of the first line of the heading; just the entered characters are printed, from left to right.
HEADING $2 \quad$ XXXXXXXXXXXXXXXXXXXXXXXX + T
HEADING 3 XXXXXXXXXXXXXXXXXXXXXXXX + \top
JUST PARTIAL TOTAL WEIGHS
XXXXXXXX
the field expands from right to left, with many spaces for completing the field length.
JUST NET PARTIAL TOTAL
XXXXXXXXXX
JUST GROSS PARTIAL TOTAL
XXXXXXXXXX
JUST GENERAL TOTAL WEIGHS
XXXXXXXX
The field expands from right to left, with many spaces for completing the field length.
JUST GENERAL NET TOTAL
XXXXXXXXXX
JUST GENERAL GROSS TOTAL XXXXXXXXXX
JUST WEIGHS GRAND TOTAL
The field expands from right to left, with many spaces for completing the field length.
JUST NET GRAND TOTAL
XXXXXXXX

JUST GROSS GRAND TOTAL
XXXXXXXXXX
JUST PARTIAL TOTAL TARE
JUST GENERAL TOTAL TARE
JUST GRAND TOTAL TARE
XXXXXXXXXX

SCALE UNIT OF MEASURE XXXXXXXXXXX

DATABASE UNIT OF MEASURE
LAST GROSS WEIGHT ON ALIBI MEMORY XXXXXXXXXX
XXXXXXXXXX
in which $\operatorname{XXXXXXXXXX~indicates~the~weight~value~on~} 10$ digits including the comma
LAST TARE ON ALIBI MEMORY
XXXXXXXXXX
ACTIVE SCALE NUMBER WITH ALIBI MEMORY XX
PRINTS ALIBI MEMORY WEIGH NUMBER XXXXXX
in which XXXXXX indicates the weigh number on 6 digits, including the comma; the field expands from right to left.
ALIBI MEMORY UNIT OF MEASURE
UM
this block prints the unit of measure of the weigh saved in the alibi memory.
JUST NUMBER OF ALIBI MEMORY REWRITINGS
XXXXX
The field expands from right to left and the non significant zeros are not printed.
LAST NET TOTALISED
XXXXXXXXXX
in which XXXXXXXXXX indicates the weight value in 10 digits including the comma.
LAST TOTALISED GROSS
XXXXXXXXXX
LAST TOTALISED TARE
XXXXXXXXXXX
NET / AMOUNT ON 5 DIGITS
XXXXX
NET PARTIAL TOTAL / AMOUNT ON 5 DIGITS XXXXX
NET PARTIAL TOTAL / AMOUNT ON 6 DIGITS XXXXXX
NET PARTIAL TOTAL / AMOUNT ON 5 DIGITS WITH CHECKDIGIT CXXXXX
ONLY NET IN POUNDS
ONLY TARE IN POUNDS
XXXXXXXXXX
ONLY GROSS IN POUNDS
XXXXXXXXXX
ONLY ARTICLE NET TOTAL IN POUNDS XXXXXXXXXX
ONLY NET IN POUNDS ON 5 DIGITS, ROUNDEDthe partial total. The field is completed with spaces on the left.
444 ONLY ADDITIONAL GENERAL TOTAL VALUE

XXXXXXXXXX in which XXXXXXXXXX is the additional totalised value, linked to the general total, on 10 digits; it is reset upon the zeroing of the general total. The field is completed with spaces on the left.
445 ONLY ADDITIONAL GRAND TOTAL VALUE
XXXXXXXXXXX
in which XXXXXXXXXX is the additional totalised value, linked to the grandl total, on 10 digits; it is reset upon the zeroing of the general total. The field is completed with spaces on the left.
446 ONLY ADDITIONAL ARTICLE TOTAL VALUE XXXXXXXXXX in which XXXXXXXXXX is the additional totalised value, linked to the article total, on 10 digits; it is reset upon the zeroing of the general total. The field is completed with spaces on the left.
447 TOTALISATION PROGRESSIVE
XX...XX

It is set through function 800, combinable with the desired key (<< F.KEYS >> step)
The field expands from right to left, with many spaces for completing the field length.
448 CUSTOMER PROGRESSIVE
XX...XX

It is set through function 801, combinable with the desired key (<< F.KEYS >> step)
449 BOX PROGRESSIVE
XX...XX

It is set through function 802, combinable with the desired key (<< F.KEYS >> step)
450 PARTIAL TOTAL RESETTINGS PROGRESSIVE
XX...XX

It is set through function 804, combinable with the desired key (<< F.KEYS >> step)
451 GENERAL TOTAL RESETTINGS PROGRESSIVE
452 GRAND TOTAL RESETTINGS PROGRESSIVE XX..XX
It is set through function 806, combinable with the desired key (<< F.KEYS >> step)
453 ARTICLE TOTAL RESETTINGS PROGRESSIVE
XX...XX

It is set through function 807, combinable with the desired key (<< F.KEYS >> step)
ONLY NET IN POUNDS ON 6 DIGITS, ROUNDEDTO 2 DECIMALS
XXXXXX
455 INDICATOR DATE IN DD-MM-YY FORMAT
DD-MM-YY
456 ACTIVE ARTICLE EXPIRY DATE IN DD-MM-YY FORMAT
DD-MM-YY
457 ACTIVE ARTICLE SEASONING DATE IN DD-MM-YY FORMA
DD-MM-YY
GIULIN CALENDARDAYS
459 INDICATOR DATE IN YYMMDD FORMAT
460 ACTIVE ARTICLE EXPIRY DATE IN YYMMDD FORMAT
YYMMDD
ACTIVE ARTICLE SEASONING DATE IN YYMMDD FORMAT YYMMDD
YYMMDD
462 INDICATOR DATE IN MM-DD-YY FORMAT
MM-DD-YY
463 INDICATOR DATE IN MMDDYY FORMAT
MMDDYY
464 INDICATOR DATE IN YYMM FORMAT YYMM
465 CURRENT YEAR IN X FORMAT (for example $2001=1,2002=2$, etc...)
X
466 CURRENT YEAR IN LITERAL FORMAT
(for example $1999=\mathrm{D}, 2000=\mathrm{E}$ etc...)
467 LAST TWO DIGITS OF CURRENT YEAR
XX
468 INDICATOR TIME ON TWO DIGITS
HH
PARTIAL TOTAL AMOUNT IN MAIN CURRENCY

XXXXXXXXXX

470 GENERAL TOTAL AMOUNT IN MAIN CURRENCY XXXXXXXXXX
471 GRAND TOTAL AMOUNT IN MAIN CURRENCY XXXXXXXXXX
472 ARTICLE TOTAL AMOUNT IN MAIN CURRENCY XXXXXXXXXXX
473 PARTIAL TOTAL AMOUNT IN SECONDARY CURRENCY XXXXXXXXXX
474 GENERAL TOTAL AMOUNT IN SECONDARY CURRENCY
XXXXXXXXXX
475 GRAND TOTAL AMOUNT IN SECONDARY CURRENCY
XXXXXXXXXXX
476 ARTICLE TOTAL AMOUNT IN SECONDARY CURRENCY XXXXXXXXXX
477 MAIN CURRENCY SYMBOL
478 SECONDARY CURRENCY SYMBOL X
the field expands from right to left; the non significant zeros are printed anyways.
PRINT
481 PRINT ENTERED DATA XXXXXXX
The 480, 481 blocks refer to the operation made with the "calculator" function described in the section 15.1, USER MAN.REF.

NET PARTIAL TOTAL IN POUNDS
NET GENERAL TOTAL IN POUNDS
NET GRAND TOTAL IN POUNDS
1° LINKED INGREDIENT DESCRIPTION
2° LINKED INGREDIENT DESCRIPTION
3° LINKED INGREDIENT DESCRIPTION 4° LINKED INGREDIENT DESCRIPTION 5° LINKED INGREDIENT DESCRIPTION 6° LINKED INGREDIENT DESCRIPTION 7° LINKED INGREDIENT DESCRIPTION 8° LINKED INGREDIENT DESCRIPTION 9° LINKED INGREDIENT DESCRIPTION 10° LINKED INGREDIENT DESCRIPTION 11° LINKED INGREDIENT DESCRIPTION 12° LINKED INGREDIENT DESCRIPTION 13° LINKED INGREDIENT DESCRIPTION 14° LINKED INGREDIENT DESCRIPTION 15° LINKED INGREDIENT DESCRIPTION 16° LINKED INGREDIENT DESCRIPTION 17° LINKED INGREDIENT DESCRIPTION 18° LINKED INGREDIENT DESCRIPTION 19° LINKED INGREDIENT DESCRIPTION 20° LINKED INGREDIENT DESCRIPTION

Abstract

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow xXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXXXXXXXXXXXXXX + T XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + \uparrow

Notes:

- The checkdigit is calculated if " C " is set in the compilation of the article, or fixed if a value is set between 0 and 9.
- Provide for a space before the five digits for the entry of the checkdigit, and enter the macro AFTER the digits to be checked.
For example:
input string >> *b12345*
output string >> *C12345*
507 EAN/UCC CHECKDIGIT ON THE 12 PREVIOUS DIGITS

Notes:

- The checkdigit is always calculated.
- Enter the macro AFTER the digits to be checked.

For example:
input string >> *123456789012*
output string >> *123456789012C*
508 JUST CONDITIONED TARE TEXT XXXXXX
XXXXXX becomes TARE in case of semiautomatic tare or PTbbbb in case of manual tare.
JUST CONDITIONED PT TEXT
XX becomes $\mathbf{b b}$ in case of semiautomatic tare or PT in case of manual tare.
510 ONLY ACTIVE ARTICLE SEASONING DAY

518 EAN/UCC CHECKDIGIT ON THE 13 PREVIOUS DIGITS

Notes:

- The checkdigit è sempre calcolato.
- Enter the macro AFTER the digits to be checked.

For example:
input string >> *1234567890123*
output string >> *1234567890123C*

JUST 1st ARTICLE DESCRIPTION
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
in which XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX are the 30 description characters; just the entered characters are printed, which expand from left to right.
JUST 2nd ARTICLE DESCRIPTION
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JUST 3rd ARTICLE DESCRIPTION
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JUST 4th ARTICLE DESCRIPTION XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PALLET PROGRESSIVE XX..XX
It is set through function 803, combinable with the desired key (<< F.KEYS >> step)
JUST MINUTES VALUE MM
PRINT SECOND DATUM ENTERED XXXXXXX
PRINT OPERATION SYMBOL
" + " in case of addition, "-" in case of subtraction, " x " in case of multiplication.
The blocks 480, 481, 525 and 526 refer to the operation made with the "calculator" function described in the section 15.1, USER MAN.REF.

ONLY "ARTICLE TOTAL" TEXT
ARTICLEbTOTAL
ONLY "PARTIAL TOTAL" TEXT PARTIALbTOTAL
ONLY "GENERAL TOTAL" TEXT GENERALbTOTAL
ONLY "GRAND TOTAL" TEXT
GRANDbTOTAL
ONLY "AMOUNT" TEXT AMOUNT
PRINTS TERMINATOR
CR, CRLF, LF or NO TERMINATOR
ONLY "NET" TEXT NETb
ONLY "GROSS" TEXT GROSSb
ONLY "TARE" TEXT TAREb
ONLY "WEIGH" TEXT WEIGH

ONLY "WEIGHS" TEXT WEIGHS
ONLY PRICE VALUE IN MAIN CURRENCY CONVERTED FROM ARCHIVE UNIT OF MEASURE TO ACTIVE SCALE UNIT OF MEASURE XXXXXXXXXXX
10 digits excluding a possible decimal point, independently of whether the functioning is by price or weight.
539 ONLY PRICE VALUE IN SECONDARY CURRENCY CONVERTED FROM ARCHIVE UNIT OF MEASURE TO ACTIVE SCALE UNIT OF MEASURE

XXXXXXXXXX
10 digits excluding a possible decimal point, independently of whether the functioning is by price or weight.

7.4 BLOCKS WITH PARAMETERS

When entering the following blocks manually in a print ticket, these require that an additional numeric value be entered (specified in detail in the block's description) in order to define the print ticket which one wants to obtain.

EXAMPLE

Entry of the 600 "PRINT n TERMINATORS" block:

- Enter the 600 block in a ticket and confirm with OK/menu.
- The indicator does not pass by the block present in the following line, but shows " $\mathrm{P} \quad 000$ ".
- Enter a value between 001 and 050; for values outside this interval the indicator shows "-Error-", restoring the block before entering the block 600.
- By entering a valid value, the block will print a number of terminators equal to the one previously entered.

PRINTS n TERMINATORS
PRINTS n LF CHARACTERS
PRINTS n TAB CHARACTERS
PRINTS n SPACE CHARACTERS
PRINTS n"_" CHARACTERS

Values valid from 001 to 050

Indicatori serie 3590EKR, 3590EXP, 3590EXT, CPWE, CPWET
605 LEFT MARGIN FOR LX300
606 NET WEIGHT ON X DIGITS
607 GROSS WEIGHT ON X DIGITS
608 TARE WEIGHT ON X DIGITS in which n can be:
$0 \quad$ Value with decimal point and spaces
1 Value with decimal point and zeros in the place of spaces
2 Value without decimal point and zeros in the place of spaces
$\mathbf{X X}$ is the field length (maximum enterable value is 20); if the weight value is greater than the number of entered digits, the complete value is printed anyways.

\#\#\#\#\#\#\#\#\#\#\#\#\#

EXAMPLE

With a weight value of 100.01 , if one wants a length of 10 characters, in the three cases one will have:
Parameter Result
$010 \quad 100.01$
$110 \quad 0000100.01$
$210 \quad 0000010001$

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

SET ACCUMULATOR VALUE
Values valid in the nXX format
in which XXX can be:
000 Net weight
001 Gross weight
002 Tare weight
003 Article net total
004 Partial net total
005 General net total
006 Grand net total
007 Article gross total
008 Partial gross total
009 General gross total
010 Grand gross total
011 Article tare total
012 Partial tare total
013 General tare total
014 Grand tare total
015 Article weighs total
016 Partial total weighs
017 General total weighs
018 Grand total weighs
019 Additional article totale value
020 Additional partial total value
021 Additional general total value
022 Additional grand total value
023 Article total amount in main currency
024 Partial total amount in main currency
025 General total amount in main currency
026 Grand total amount in main currency
027 Totalisation progressive
028 Customer progressive
029 Box progressive
030 Pallet progressive
031 Partial total resettings progressive
032 General total resettings progressive

034 Article total resettings progressive
035 First tare value
036 Switches the configured value with the comparison value (see Macro Attachment)
610 SETS DECIMALS' VALUE OF THE ACCUMULATOR
Values valid in the XXX format
in which $\mathbf{X X X}$ can be:
000 No decimals
0011 decimal
0022 decimals
0033 decimals
0044 decimals
NOTE: if decimals are not set, the ones of the scale are used.
611 SETS UNIT OF MEASURE CONVERSION VALUE OF THE ACCUMULATOR Values valid in the XXX format in which XXX can be:
000 g
001 kg
002 t
003 lb
NOTE: if the unit of measure is not set, the one of the scale is used.
612 PRINTS ACCUMULATOR VALUE
Values valid in the nXX format

in which \mathbf{n} can be:

$0 \quad$ Value with decimal point and spaces
1 Value with decimal point and zeros in the place of the spaces
2 Value without decimal point and zeros in the place of the spaces
$\mathbf{X X}$ is the length of the field (maximum enterable value is 20); if the weight value is greater than the number of entered digits, the complete value is printed anyways.

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

EXAMPLE

The scale is at three decimals and the unit of measure is the kg; if one wants to print the net weight with two decimals converted in pounds, expressed on 7 digits without decimal point, with non significant zeros filling the eventual spaces.

One should set the following macros:
609 >>> enter parameter 000
610 >>> enter parameter 002
611 >>> enter parameter 003
612 >>> enter parameter 207
If the net weight of the scale corresponds to $2,480 \mathrm{~kg}$, the printed value will be 0000547
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
613 SET OUTPUT FUNCTIONING
Values valid in the nXX format
In which \mathbf{n} is the output status:
0 OFF
1 or 2 ON
XX is the number of the output to be enabled, from 00 to 15.
If one needs to manage various printers using the available outputs (connecting the transmission of the printer port on the common of the outputs), follow the example in macro 631:

NOTE: if one uses the 618 and 619 blocks, one should enter the block 331 "FORCES PRINTING" before the blocks that need to be converted.

621 PRINT DIRECTION FOR MASTER / SLAVE SYSTEM
Valid values 000, 001, 002
$000 \rightarrow$ Prints only on the SLAVE.
$001 \rightarrow$ Prints only on the MASTER.
$002 \rightarrow$ Prints only on the indicator which is being used.
SETTING THE THRESHOLD OF PRINT START OR THE NUMBER OF CHARACTERS TO BE PRINTED FOR THE INPUT TEXT CONTENTS

Values valid in the $\mathbf{n X X}$ format This macro allows to define which part of the contents of an input text which is to be printed in the 624 macro.
n can be:
0 for setting the threshold beginning;
1 for setting the characters to be printed.
$\mathbf{X X}$ is the threshold beginning if $\mathrm{n}=0$ or the characters to be printed if $\mathrm{n}=1$.
See the example in the 624 macro.
PRINTING OR CLEARING INPUT TEXT CONTENTS
Values valid in the nXX format This macro allows to print a part of an input text content defined in the 622 macro or to clear the contents of the input text content.
n can be:
0 to print;
1 to clear.
$X X$ is the number of the input text ($X X=01$ to print or clear the text contents of input $0, X X=15$ to print or clear the contents of the text of input $14, \mathrm{XX=00}$ to clear all the contentx of the input texts).

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

EXAMPLE

If one wants to print from the 1 st to the 6 th letter of the contentx of input text 0 and clear the contents.
One should set the following macros:
...
622 >>> enter parameter 000
622 >>> enter parameter 106
624 >>> enter parameter 001
624 >>> enter parameter 101

Setting the start of the printing from the 1st character
Setting the number of characters to be printed at 6 .
Printing the contentx of the input 0 text with the set margins.
Clearing the contents of the input 0 text.

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

SETTING THE ALIGNMENT AND NUMBER OF FORMATTING CHARACTERS Values valid in the nXX format This macro, followed by 626, allows to align to the right or to the left, the contents of the following macro in regards to the defined number of characters.
n can be:
0 to set the alignment to the right
1 to set the alignment to the left
$\mathbf{X X}$ is the number of formatting characters.
See the example in the 626 macro.

XXX corresponds to the ASCII decimal character (from 001 to 255).

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

EXAMPLE

If one wants to print on the right the contents of the 330 macro (NUMBER OF ACTIVE SCALE) one puts the "-" character (ASCII decimal 045) as filling on the left.
The macro contains 17 characters; therefore if the print line is 24 one should set the following macros:

625 >>> enter parameter 024

626 >>> enter parameter 045
330
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
627 CONFIRMATION "WAIT" FROM PC OR BY PRESSING OF C KEY
Values valid in the XXX format This macro allows to block the indicator and view the message "WAIT" on the LED display, after having forced the printing of the previous macros, and waiting for the character confirming that the reception has been made by the PC. In any case it's possible to unlock the indicator by pressing the \mathbf{C} key.
Once unlocked, the indicator will print the eventual following macros.
XXX corresponds to the ASCII decimal character to be received in order to unlock the indicator (from 001 to 255, or 000 in case one wants to wait for the "PCOK" command).
NOTE: It's possible to enter more than one confirmation "wait" in the same print format.

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

EXAMPLE

One wants to lock the indicator after printing a series of data; then one waits for the "-" confirmation character (ASCII decimal 045) and, once received, transmit other data.
One should set the following macros:

$$
301
$$

302
303
627 >>> enter parameter 045 Setting the wait of the "." character (ASCII decimal 045)
304
305
306

SETS THE VALUE OF THE SET POINT IN THE MACRO 609
Values valid in the XXX format
Parameter ON Threshold (setpoint)
========= =================
$000 \sim 003 \quad$ OUT1 ~4 (Mother board)
004~015 OUT5~16 (Expansion board)
Parameter OFF Threshold (hysteresis)
========= ==================
$000 \sim 003$ OUT1~4 (Mother board)
004 ~ 015 OUT5~16 (Expansion board)

631 FORCES PRINTING AND TIME DELAY
Values valid in the XXX format
Besides the print forcing function it also functions as a time delay.
XXX Time delay (up to 200 dsec); for example " 001 " equals to 0,1 seconds; " 010 " equals to 1 second.

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

EXAMPLE

With the need to manage various printers through the available outputs (by connecting the transmission of the printer port on the common of the outputs), as follows:
PRINTING OF THE NET WEIGHT ON OUTPUT 1, GROSS ON OUTPUT2, TARE ON OUTPUT 3.
One should set the following macros:
613 >>> enter parameter 100 (OUT 1 ON)
613 >>> enter parameter 001 (OUT 2 OFF)
$613 \ggg$ enter parameter 002 (OUT 3 OFF)
631 >>> enter parameter 001 (0,1 seconds)
301 (Net weight)
631 >>> enter parameter 001 (0,1 seconds)
613 >>> enter parameter 000 (OUT 1 OFF)
613 >>> enter parameter 101 (OUT 2 ON)
613 >>> enter parameter 002 (OUT 3 OFF)
631 >>> enter parameter 001 (0,1 seconds)
302 (Gross weight)
631 >>> enter parameter 001 (0,1 seconds)
$613 \ggg$ enter parameter 000 (OUT 1 OFF)
$613 \ggg$ enter parameter 001 (OUT 2 OFF)
613 >>> enter parameter 102 (OUT 3 ON)
631 >>> enter parameter 001 (0,1 seconds)
303 (Tare weight)
631 >>> enter parameter 001 (0,1 seconds)

644 SETS THE VALUE FOR ENABLE OR DISABLE PRINT TERMINATOR
Values valid 000 or 001
$000 \rightarrow$ Enable print Terminator
$001 \rightarrow$ Disable print Terminator

SIMULATES THE PRESSURE OF A KEY

- $0 x x$ simulates the pressure of the key with $x x$ code.
- $1 x x$ simulates the long pressure of the key with $x x$ code.

CODE	PRESSED KEY
00	F1 key
01	F2 key
02	F3 key
03	F4 key
04	F5 key
05	F6 key
06	F7 key
07	F8 key
08	F9 key
09	F10 key
10	Numeric key '0'
11	Numeric key ' 1 '
12	Numeric key ' 2 '
13	Numeric key ' 3 '
14	Numeric key '4'
15	Numeric key ' 5 '
16	Numeric key ' 6 '
17	Numeric key ' 7 '
18	Numeric key ' 8 '
19	Numeric key ' 9 '
20	Dot key (.)
21	ZERO key
22	Fn/ENTER key
23	2nd F key
24	C key

646 WAIT THE PRESSURE OF A KEY

- Oxx set the visualization of WAIT message and "block" the instrument, it remain on waiting of the pressure of the key with xx code.
- $1 x x$ "block" the instrument, it remain on waiting of the pressure of the key with $x x$ code.

647 WAIT THE STATUS OF THE INSTRUMENT

- Oxx set the visualization of WAIT message and "block" the instrument, it remain on waiting of $x x$ status.
- $1 x x$ "block" the instrument, it remain on waiting of $x x$ status.

648 SET THE LEVEL OF THE FUNCTION

Oxx set the menu level of the function that one want to perform.

649 SET THE FUNCTION

0xx set the code of the function that one want to perform.
Example:
To execute the function 311 is necessary insert in the format the macro 643 with 003 parameter (that set the menu level) and the macro 644 with 011 parameter (number of the function).

650 PRINT OF AN INGREDIENT
Values valid in the XX format
It allows the printing of a specific ingredient of the selected product.
XX position of the ingredient in the product; 00 is the first ingredient of the product and 49 is the last.
651 REDIRECTION OF THE PRINT

- 000 print on Print port
- 001 print on Pc port
- 002 print on Aux port

Note: parameter 255 forces printing.

SET ACCUMULATOR WITH PRINT BUFFER VALUE OR DECREASE PRINT BUFFER
In which n can be:
0 sets the accumulator with the character that is in the following position of the print buffer:
current position - XX characters; the character will be stored in ASCII decimal code.
1 decreases the print buffer of XX characters.
2 increases the print buffer of $X X$ characters.
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

EXAMPLE

One wants to get only the number of the active scale from the macro 330 ("ACTIVE SCALE NUMBER") and set it in the accumulator (in ASCII decimal value), without printing.
One should set the following macros:
330 "ScalenNumbernnnnXt" (X is the number of the scale)
650 >>> enter parameter 002 (sets the number of the scale in the accumulator)
Considering that the cursors start from the end of the string the accumulator will get the number of the scale " X "
650 >>> enter parameter 118 (decreases the print buffer of 18 characters)

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

SET CHARACTER THRESHOLD OF THE INGREDIENT
Values valid in the nXX format Print a maximum of XX characters of an ingredient (separated by a character setted in the macro 654). n can be:

- 0 doesn't make the cutting of the words of one ingredient
- 1 makes the cutting of the words of an ingredient when it reaches the maximum number of characters.

If XX is equal to 0 , the ingredient index and the character index come to zero.

EXAMPLE:

The first ingredient is: eggs,milk,flour, water,tomatoes and the second is yeast, chocolate, sugar but you want set it in some lines of 20 character maximum:
654 >>> enter parameter 044 (ascii code for the separator ",")
653 >>> enter parameter 020 (doesn't make the cutting of the words but the first line is 20 character maximum)
$653 \ggg$ enter parameter 020 (doesn't make the cutting of the words but the second line is 20 character maximum)
653 >>> enter parameter 020 (doesn't make the cutting of the words but the third line is 20 character maximum)
$653 \ggg$ enter parameter 020 (doesn't make the cutting of the words but the fourth line is 20 character maximum)
The result of the printout is:
eggs,milk,flour,
water,tomatoes,
yeast,chocolate,
sugar
SET THE SEPARATOR OF THE INGREDIENTS
Values valid in the XXX format
See the macro 653. With this macro one can set the character to separate one ingredient from the other.
REDIRECTION BUFFER
Values valid in the XXX format
In which XXX can be:

- 001 inserts in the redirection buffer all the data that follow the macro and prints them
- 002 inserts in the redirection buffer all the data that follow the macro (without printing them)
- 003 prints the data of the redirection buffer
- 004 cancels all the data in the buffer

7.5 USE OF THE PRINT PREFORMAT

When one use TOTALIZATION formats particularly voluminous, it is possible that the print execution may be a bit slow; to improve the printing speed, one can program the totalization format in two parts: the FIXED part (e.i. with the label size, with the alignment, etc...) in the PRINT PREFORMAT, and the VARIABLE part (with the variable information as the weight, the article description etc...) in the TOTALIZATION FORMAT itself.
The print preformat is transmitted to the labeller IMMEDIATELY AFTER THE INDICATOR IGNITION, AFTER THE SELECTION OF AN ARTICLE and AFTER EACH PRINT.
As the totalization format results "thinner" of the all fixed part already sent, the execution will be much faster.

NOTES

- The preformat is valid only for the TOTALIZATION format.
- Since the preformat is sent after each print, it will be necessary to put before the all formats that don't use the preformat (all excluded the totalization one) a command (specific for the used labeller) that DELETE THE PREFORMAT in the labeller memory; otherwise will be printed the preformat also when is not necessary, causing an error in the executed print.

EXAMPLE WITH ITALORA SMT280TT LABELLER

1) Originary totalization format:
?67\&0
?07\&100
? $51 \& 0$
?27\&
?81\&0
?08\&75
? $43 \& 0$
?44\&1
?60\&1
?76\&00000000
?68\&0
?06\&-67
?83\&0,0,0
?83\&0,1,0
?83\&0,2,0
?83\&0,3,0
? $83 \& 1,0,0$
? $83 \& 1,1,0$
? $83 \& 1,2,0$
?83\&1,3,0
?83\&1,4,0
?83\&1,5,0
?20\&2,0
?20\&3,0
?12\&1
?22\&0,420,1,1,0
?52\&10,55,0,2,11;@[333]
?15\&54,19,659,2,3
? $15 \& 710,23,398,0,2$
?09\&2
?10\&1
?11\&3
?13\&2
?15\&110,23,398,0,3
?52\&00,62,25,2,21;@[378]
?52\&10,130,26,1,33;@[486]
?52\&10,130,48,1,33;@[487]
?52\&10,130,70,1,33;@[488]
2) The print preformat will be:
?00\& [Command of Italora for the buffer zeroing]
?67\&0
?07\&100
?51\&0
?27\&
?81\&0
?08\&75
?43\&0
?44\&1
?60\&1
?76\&00000000
?68\&0
?06\&-67
? $83 \& 0,0,0$
?83\&0,1,0
?83\&0,2,0
?83\&0,3,0
?83\&1,0,0
?83\&1,1,0
? $83 \& 1,2,0$
?83\&1,3,0
? $83 \& 1,4,0$
? $83 \& 1,5,0$
?20\&2,0

8. DISPLAY CUSTOMIZATION

It's possible to program the lines of the customizable display. In each line up to 22 characters can be displayed.
The print format that allows to program the customizable display is the number 99.
The terminator to be used in this format must be CR.
One can configure this format through the Dinitools ${ }^{\text {TM }}$ software (for the management of the print formats, see the manual of the software).
The programming of the lines of the display can be executed by using the print macros described in the sections "LIST OF PRINT BLOCKS" and "BLOCKS WITH PARAMETERS".

9. ELECTRICAL CONNECTION SCHEMES

9.1 MOTHER BOARD

There aren't differences between two switches, doesn't matter which is "ON", is enough activate only one

ON SW:

- If closed, one can automatically turn on the instrument, as soon as the power voltage is supplied, one must also turn off the instrument by removing the mains voltage.
- If open, one can turn the instrument on and off by just pressing the ON key.

J2, J3 (SENSE): if closed, REFERENCE + and POWER SUPPLY +, REFERENCE - and POWER SUPPLY - are jumpered on the board

J 1 : if opened it enables the access to the metrological parameters, when configuring.

SERIAL PORTS (refer to section 5)

COM 1	COM 2	COM 3
Connector AMP CN12: serial 232	Connector AMP CN13: serial 232	Connector AMP CN14: serial 232
Terminals 14-15-16: serial 232	Terminals 16-17-18-19: serial 232	Terminals 22-23: serial 485(U14)

IMPORTANT:

In the case of RS485 connection, read carefully and apply what is described in chapter 5.1.

POWER SUPPLY

6 Vdc BATTERY POWER SUPPLY	+Vdc POWER SUPPLY	V-AUX AUXILIARY POWER SUPPLY	+Vdc (OUT) POWER SUPPLY
$4 \text { GND (0 Vdc) }$	$\begin{aligned} & 2 \text { GND } \quad(0 \mathrm{~V}) \\ & 1+\mathrm{Vdc} \\ & (+12 \mathrm{Vdc}, 8 \div 36 \mathrm{Vdc} \end{aligned}$	$4 \text { GND (} 0 \mathrm{~V} \text {) }$	20 GND (0 V) $21+\mathrm{Vdc}(+12 \mathrm{~V}$ only if connected
3 +BAT (+6 Vdc)	with I/O expansion board connected)	5 +Vaux (5,3-8 Vdc $400 \mathrm{~mA} \max)$	to the power supply)

CELL LOAD RECEIVER (terminal board connection)

25	SIG+	SIGNAL +
26	SIG-	SIGNAL -
27	SENS+	SENSE +
28	SENS-	SENSE -
29	EXC+	EXCITATION +
30	EXC-	EXCITATION -

INPUTS (OPTOISOLATOR PHOTOCOUPLERS)

Power supply: $12 \mathrm{Vdc} \div 24 \mathrm{Vdc}$ max 20 mA .

PHOTOMOSFET OUTPUTS

Maximum power: 48 Vac or $60 \mathrm{Vdc}, 150 \mathrm{~mA}$ max., 10 ohm max

!! IMPORTANT!!

The optoisolation of the inputs and outputs is obtained by powering the common of the outputs and/or of the inputs by using a voltage outside the instrument.

PLUG6 CONNECTIONS:

Y2	PLUG6	DB9	COLOR		MEANING
1	1		ORANGE	WHITE	
2	2	3	BLUE	WHITE	RX
3	3		BROWN		
4	4	5	GREEN	WHITE	GND
5	5	2	ORANGE		TX
6	6		BROWN		WHITE

(*) May be present depending on the model.
!! IMPORTANT !!
Use 6-pin RJ12 connector, because the 8-pin connector doesn't fit into the hole of the weight indicator.
9.2 I/O EXPANSION BOARD (fitted with 3590EXT in IO version or CPWE)

ANALOGUE OUTPUT

I/01 (SLOT 1):		I/O2 (SLOT 2):	
$531+(\mathrm{A} 1)$	$+20 \mathrm{~mA}$	56 1+ (A2)	$+20 \mathrm{~mA}$
54 COM-(B1)	$0 \mathrm{~mA} / \mathrm{V}$	57 COM- (B2)	$0 \mathrm{~mA} / \mathrm{V}$
$55 \mathrm{~V}+$ (C1)	$+10 \mathrm{~V}$	$58 \mathrm{~V}+(\mathrm{C} 2)$	+10 V

Note: the maximum resistance applicable on the output current is 350 Ohm and the minimum resistance applicable on the output voltage is 10 kohm.

INPUTS (OPTOISOLATOR PHOTOCOUPLERS)

Power supply: $12 \mathrm{Vdc} \div 24 \mathrm{Vdc} \max 20 \mathrm{~mA}$.

PHOTOMOSFET OUTPUTS

Maximum power: 48 Vac or $60 \mathrm{Vdc}, 150 \mathrm{~mA}$ max., 10 ohm max

!! IMPORTANT!!

The optoisolation of the inputs and outputs is obtained by powering the common of the outputs and/or of the inputs by using a voltage outside the instrument.

9.3 INTEGRATED CIRCUITS INSTALLATION

It is necessary follow this procedure to install Input, Output and RS485 integrated circuits:

9.4 DISPLAY BOARD

PC-Keyb - PC KEYBOARD CONNECTOR
Keyboard emulation input, usable for the connection of the instrument to the PC keyboard or the badge/bar code reader.

PC-KEYB		PS/2
1	+5 V	4
2	GND	3
3	DATA	1
4	CLK	5

9.5 CONTROL LIGHT (only for CPWET)

J 1 : if closed, allows to set the power supply of the control light to 6 V .
J2: if closed, allows to set the voltage of the control light to 12 V .
J3: not used
!!WARNING!!
Only one jumper must be closed at time

Y1	MEANING	COLOUR	MOTHERBOARD
1 (YEL)	OUT1	YELLOW	7
2 (GRN)	OUT2	GREEN	8
3 (RED)	OUT3	BROWN	9
4 (GND)	GND	WHITE	20

[^0]: (\#) The capacity (CAPAC.), the division (DIV.), the decimals (DECIM.) and the unit of measure (U.M.) must be set depending on the configuration of the remote scale.
 The communication on the slave must be set in request mode.

